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Abstract

Pre-trained language models, which provide dense embedded representations of
words in context, achieve state-of-the-art results on countless NLP tasks. While
highly effective, these dense representations lack some of the advantages of their
sparse counterparts, including simple inverted indexing and interpretability. We
propose a method for building sparse topical features for documents using a hierar-
chical clustering over contextualized token representations in a corpus. We show
that these sparse features are effective representations for document classification,
outperforming other sparse representations by 12 points on one dataset, while only
performing slightly worse than dense representations.

1 Introduction

Dense representations of words, sentences, and documents have achieved phenomenal success with
state-of-the-art results in most if not all natural language tasks [8, 16, 19, 14, 18, 20] by pre-training
models on massive text corpora. Recent methods also incorporate context to capture multiple word
senses and generalize to word usages not seen at training time.

Sparse features have several desirable properties not found in their dense counterparts. Sparse features
are easily indexed via inverted indices to facilitate efficient lookup of nearest neighbors. They often
provide interpretable topic-like representations, which can be used to explain why documents are
related or why a given classification decision is made. Sparse features can also be used to efficiently
and dynamically short-cut classification decisions making them more efficient [27].

Often these sparse features derive from global features of documents or hand-crafted linguistic
constructs, rather than leveraging the fine-grained nuance contained in dense, contextualized repre-
sentations. A natural means of deriving global structure from existing representations is clustering,
which has often been used to discover meaningful sparse features. Topic models implicitly perform
clustering of the underlying bag-of-words representations, and Brown clusters quite notably cluster
words in similar contexts using hierarchical agglomerative clustering. However, these methods are
limited in their ability to incorporate polysemy and handle new word types/senses.

In this paper, we present a clustering-based approach for generating sparse features for words and
documents using a combination of pre-trained language model word representations and hierarchical
clustering. The hierarchical representation allows our approach to model multiple granularities of
clusters, more fine-grained than standard topic modeling based approaches. We use methods for
online and incremental hierarchical clustering to help support discovery of new topics as they emerge
in data that arrives in an online fashion. We use contextualized word representations to help mitigate
challenges of polysemy. We perform experiments on document classification tasks and compare
to existing modern and classic sparse representation-based approaches. We find that our approach
outperforms these state-of-the-art sparse representations by 1 point on sentiment classification and
over 10 points on multiclass classification, while performing not much worse than state-of-the-art
dense methods.
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Related Work Sparse features have a long history in natural language processing with models
using bag-of-words [23], Brown clusters [4], topic-based features [3, 2], and parse features applied to
a wide variety of tasks such as document classification [17], named entity-recognition [21], semantic
parsing [30], relation extraction [7, 22], and others. Sparse representations of data items (such as
words/documents) are frequently discovered using methods like Latent Dirichlet Allocation [3], non-
negative matrix factorization, dictionary learning [10], representation learning [25, 6], and recently
using neural variational topic models [26, 5, 12]. Bayesian non-parameteric methods such as the
Indian Buffet Process [9] discover infinite dimensional binary sparse vectors. This is closely related
to our approach which grows the hierarchical clustering in the presence of more data. Recent work in
information retrieval [31] directly learns a sparse encoding of documents such that related documents
share sparse dimensions. Some recent work leverages sparsity in semantic space to improve dense
representations, such as P-SIF [11] or Word Mover’s Embedding [28].

2 Discovering Sparse Representations with Hierarchical Clustering

Our approach discovers topic clusters of words in context by performing a hierarchical clustering
of embedded representations from a pre-trained language model. The position of a word in the
hierarchical clustering defines a set of topics to which the word belongs. Topic sets for all words in
one document combine to form the document topic distribution.

2.1 Dense Representations from Pre-trained Language Models

Given a corpus of documents D = {d1, d2, . . . , dN}, we use a pre-trained language model, in
particular, BERT [8], to generate contextualized representations for each token in each document.
Tokens are determined by the pre-trained language model’s tokenizer and consist either of words or
subwords/wordpieces [29]. The embedding of each word is based on both its forward and backward
context, as the model has been trained to perform a cloze task. For a document di, we use Di to
represent the set of its word representations and use wij to represent the jth token’s embedding. After
obtaining the embeddings for each word, we remove stopwords, sub-word pieces, and [CLS] and
[SEP] representations from each Di and use representations from the final layer of BERT.

2.2 Incremental Hierarchical Clustering

PERCH is an incremental hierarchical clustering algorithm [13]. PERCH works by observing one
data point at a time and updating the hierarchical clustering with each observation. The algorithm
endows each tree node n in the hierarchical clustering with a bounding box covering its descendant
data points. Each new data point, x, is efficiently routed to its nearest neighbor, n, using the bounding
boxes in a manner similar to an R-tree. The new point is added as the sibling of its nearest neighbor,
creating a new internal node as the parent of these two leaves. The algorithm then performs local
re-arrangements, rotations, which swap the newly added point x with its aunt a in the tree under
certain conditions. The swap is applied if the maximum distance between n, the sibling of x, and
the aunt a is less than the minimum distance between n and x. The minimum distances between
internal nodes is measured as the minimum distance between any descendant leaves of the nodes and
is estimated using the bounding boxes. Maximum distance is defined similarly. See Figure 1.

Practical Implementation Details While PERCH is highly scalable, it can only be moderately
parallelized. To scale to corpora with several million words or more, we, in a manner akin to finding
coresets [1], first group words into small clusters of related words in subsets of the corpora in parallel
using Mini-Batch K-means [24]. This is highly parallelizable and can effectively summarize the
several million or more word corpus into a collection on the order of a hundred thousand vectors. A
preliminary analysis shows the K-means cluster centers consist of only a handful of word types, often
from the same document.

2.3 Sparse Word and Document Representations

We use the placement in the hierarchical clustering of each word in a document to determine the
sparse representation of the document. For a given word wij in document Di we represent this as
a function of its ancestors in the tree. In particular, given a hierarchical clustering T , we represent
a word wij as the |T |-dimensional sparse vector containing ones for its k closest ancestors (its
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Figure 1: PERCH incremental construction and rotations. The datapoint x is first added as the sibling
of its nearest neighbor `. Then two recursive rotations are applied. The resulting structure keeps the
points in the purple colored cluster in a subtree separate from the newly added blue point.
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Figure 2: Example encodings in hierarchical clustering. The figure shows the sparse codes corre-
sponding to three leaves of the tree structure x1, x2, and x3. It also shows how a point xt can be
encoded but not added to the tree structure. The nearest neighbor of xt is labeled and in the PERCH
construction process xt would be rotated to keep the light green points in a separate subtree. The
sibling of xt is L, and xt is encoded by the ancestors of L.

parent, parent’s parent, and so on), where |T | is the number of internal nodes in the hierarchical
clustering. We denote this as sp(wij , k). We represent each document as the sum of the sparse word
representations. That is, sp(Di, k) =

∑
wij∈Di

sp(wij , k). See Figure 2 for a visual representation.

In some cases, we might want to provide an encoding of a document without adding its words into
the tree structure. This could be needed for time or space efficiency or to achieve parallelism in
encoding. To achieve this, for each word in a document, we determine which existing tree node would
be the sibling of that word were it added in PERCH (i.e., after rotations are applied). The construction
algorithm of PERCH would create a new parent node for the newly added node and the found sibling.
The creation of this node would effectively create a new dimension in the encoding vector space.

PERCH has particularly desirable properties for online topic discovery. Rotations in PERCH never
remove a previously existing ancestor from any given leaf’s set of ancestors, meaning that existing
dimensions of previously-encoded documents’ sparse codes do not need to be edited when new
documents are added. New dimensions may still need to be added to existing documents. Both
properties are apparent in Figure 1, where leaves a and l never rise above the level of the orange node
(and hence maintain all their existing ancestors). However, a and l do gain p as an ancestor.

3 Experiments

We evaluate the quality of our sparse representations by using our unsupervised sparse representations
as input to a supervised classifier. We also provide a qualitative analysis of the topics discovered by
our method.

We evaluate on two datasets: Twenty News Groups, text documents labeled with one of twenty news
groups categories; and IMDB review sentiment classification, a binary sentiment analysis dataset
containing the text of movie reviews [15].

To evaluate the quality of document representations, we use the document representations to form
feature vectors for training a supervised classifier for each dataset. This follows the experimental
setup of Card et al. [5] and Gupta et al. [11]. We train a logistic regression classifier as in Card et
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Sparse Dense

Our Our Scholar Scholar BoW [5] SLDA [5] P-SIF [11]
Approach (k=1) Approach (k=5) (labels) [5] (covariates) [5]

20NG 0.82 0.83 0.67 0.71 0.70 0.60 0.86
IMDB 0.87 0.88 0.86 0.87 0.87 0.64 –

Table 1: Document classification accuracy of baseline models compared with our approach. Baseline
results from [5]. P-SIF did not evaluate on IMDB.

The  Night  Listener  held  my 
attention,  with  Robin  Williams 
shining as a New York City radio 
host who becomes enamored with 
his friendship with a 14 year old 
boy (Rory Culkin) who is very ill. 
Williams has  never  met  the boy 
in person, as they have only been 
in  contact  by  talking  on  the 
telephone.  However,  Williams' 
ex-boyfriend  (nice  job  from 
Bobby  Cannavale)  raises  doubt 
about  the  boy,  which  prompts 
Williams  to  arrange  a  meeting 
with him in person. What follows 
makes  a  permanent  impact  on 
Williams  in  a  way  he  does  not 
expect….

In  this  "critically  acclaimed  psychological  thriller 
based  on  true  events,  Gabriel  (Robin  Williams),  a 
celebrated  writer  and  late-night  talk  show  host, 
becomes  captivated  by  the  harrowing  story  of  a 
young  listener  and  his  adoptive  mother  (Toni 
Collette). When troubling questions arise about this 
boy's (story), however, Gabriel finds himself drawn 
into a widening mystery that hides a deadly secret 
according to film's official synopsis….
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Figure 3: Example query IMDB review, with the first 2 retrieved results.

al. [5]. We split the training data into a 80%/20% train/dev split and perform a grid-search over the
regularization parameters of the classifier, as well as early stopping on the dev set.

We compare our approach to a recently proposed state-of-the-art sparse representation, Scholar,
proposed by Card et al. [5]. Scholar is a neural topic model that also supports supervision and
incorporating covariates/document meta-data. We also compare our approach to the state-of-the-art
dense document representation method P-SIF [11].

For our method, we use the BERT-base-uncased pre-trained BERT model without any fine-tuning.
We build the hierarchical clustering on the training dataset. The encoding method that encodes a
document without adding its words to the tree is used. We tested with the number of ancestors
parameter k ranging from 1 to 10. The word representations from BERT are unit normed.

Table 3 provides the results for the document classification experiment. There was little variation
in scores for k > 1, so we report scores for k = 1 and k = 5 on both datasets. We find that our
method is much more accurate than the other sparse representations, while only performing slightly
worse than the dense representation-based approach. We hypothesize that our improved performance
comes from the quality of the pre-trained language model that drives our sparse representation. Our
clustering allows the representation to encode the groups of related words in fine-grained topics. We
illustrate what the discovered fine-grained topics look like by providing example documents and
nearest neighbors by topics in Figure 3. For each neighbor, we show several of the shared topics.

4 Conclusion

We introduce a method for building sparse word and document representations using a hierarchical
clustering of word token representations from a pre-trained language model. We show how these
features can be effectively used for document classification. We also demonstrate the interpretability
of these topics by inspecting which topics are present in pairs of nearest neighbor documents. In
future work, we intend to demonstrate the model’s ability to adapt online to topic introduction and
drift, as well as develop training methods to jointly update the clustering structure, sparse codes, and
word representations.
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