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Abstract

In open-ended tasks that require domain expertise, how do we assign experts that
will perform the task well? Important use-cases like community question answering,
peer review, hiring committees, and crowd-sourcing platforms all require assigning
experts from a pool of users. Ideally, we would assign experts to tasks so as to
optimize overall task performance, but expert performance is unknown prior to
making the assignment. We propose predicting these performance metrics and
assigning using the predictions. Using an expert-assignment task derived from
StackExchange, we show that explicitly predicting expert performance has a large
impact on assignment decisions and can improve overall welfare. We demonstrate
this claim using both theoretical bounds on statistical generalization guarantees and
automated metrics of assignment quality. This work highlights the effectiveness
of predictive assignment, and the need to collect high quality datasets linking pre-
and post-allocation measures in other important expert assignment tasks.

1 Introduction

In the knowledge economy, many important institutional processes draw from pools of experts to
accomplish tasks requiring specialized knowledge at large scales. These tasks include community
question answering, reviewer assignment for peer review and grant funding allocation, and peer
grading in massive online open coursework (MOOCs). In each of these applications, we can use
historical performance measures, as well as other available features of experts and tasks, to predict
expert performance on each task and assign experts appropriately. However, experts have limited
time and resources, and can typically only respond to a small number of tasks at a time. We must be
able to both predict expert performance, and use those predictions effectively to assign the limited
resources of the experts.

Community question answering sites have existed for decades, serving as repositories of high-quality
information and enabling users to connect with domain experts rapidly. However, many of these
questions remain unanswered. For example, as of December 2023 the CS StackExchange has 12,962
total questions with score at least 2, of which roughly 10% (1,231) have no answer. Over 5 million
questions remain unanswered in StackOverflow [27]. These unanswered questions could be addressed
if we prompt users to answer them, but each user must be matched to questions they have expertise
in answering. We also must select users that have a track record of providing high quality answers,
while not overloading any individual user. The same fundamental problem appears in the context of
academic peer review [6, 10, 16, 25], as well as in peer evaluation of course assignments in MOOCs
[1, 8, 14, 22]. Correctly trading-off among these factors (past user competence, user expertise, and
user workload) is a complicated endeavor.
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Question recommendation in StackExchange has long incorporated components that predict down-
stream answer quality, either through predicting whether a user’s future answer will be accepted
[12, 29], or by predicting the score of the user’s future answer [26, 27]. These recommendation
algorithms do not consider the trade-offs that arise from users’ time limitation constraints. Mean-
while, in peer review and other peer evaluation problems, existing methods assign experts using
proxies of downstream task performance, which we assume correspond to task performance but
often have not been verified. In peer review, these proxies are typically document-based similarity
measures, reviewer bids, and keyword matching scores [11]. While trade-offs in assignments have
been well-studied in this context [10, 16, 25], to date there has only been a single study showing any
link between these intuitive proxies of performance and actual task performance [20].

In this work, we frame the expert assignment task as the combination of performance prediction
and optimal assignment. We select a single target outcome of interest, which measures expert task
performance. These outcomes are labeled from among a set of outcome labels. We then train a
model to predict the outcome when assigning different experts to a new problem. By estimating
the probabilities of each outcome, we can easily trade-off between different experts for a given task.
More importantly, these probabilities help us assign many experts to many tasks at scale.

1.1 Contributions

Our contributions are as follows:

• we rigorously investigate feature importance of a logistic regression model trained to predict
probability of upvotes, showing the strength of historical performance measures in particular
(Section 4.2),

• we derive theoretical high-probability bounds for assignment quality under our predictive
model (Theorem 3.1),

• we demonstrate experimentally that assignments made under the predictive model have
higher worst-case predicted quality and assign users with a stronger historical track record
than baselines (Section 5),

• and we study the stability of and correlations between 11 different automated metrics of
assignment quality, enabling a nuanced understanding of the interactions between expert
assignment measures and outcomes (Section 5.1).

1.2 Related work

Many existing works learn to recommend users for answering questions on community question
answering (CQA) forums like StackExchange, Quora, and Yahoo Answers. Sun et al. [26] predict the
future user-voted score when assigning a user to a given question. Our work additionally contributes
rigorous feature importance analysis, updated NLP techniques, and examination through the lens of
constrained assignment. Tondulkar et al. [29] predict which user’s answer will be marked as accepted
by the original question poster. Yang et al. [31] recommend users to questions with topics that interest
them and in which they have expertise, irrespective of the user’s competence. Qian et al. [17] study
the setting where experts are sent requests for work, and they want to maximize the topical similarity
of recommended experts as well as the acceptance rate of the invitations. While much attention has
been paid to expert recommendation and prediction of answer quality in CQA forums, none of these
works have addressed the constraints of the experts being assigned, or trade-offs among the many
valid measures of answer quality in CQA.

A particularly thorny aspect of predictive expert assignment is identifying metrics for answer quality.
Zhu et al. [33] asked both users and subject-matter experts to give a list of important criteria for
evaluating answer quality, identifying 13 major criteria for answer quality measurement. They also
asked experts to label answers as satisfying or not satisfying each criterion, and finally to rate each
answer as good or bad overall. These and other similar criteria have been used or rediscovered in
other important CQA studies [7, 21]. We employ them as features in Section 4, and use them as
secondary evaluation metrics in Section 5.

Some prior work attempts to predict missing bids for reviewer assignment, and to use these predicted
bids to compute and evaluate assignments [5, 19]. Charlin et al. [4] also evaluate reviewer assignments
under a predictive model imputing missing relevance scores. Although these works study the quality
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of assignment under a predictive model, none assigns using predictions of final task completion
quality. Preference information and content-based relevance scores can be important factors in
performance prediction as shown in Section 4.2.

Saveski et al. [20] develop a model for counterfactual evaluation of alternative reviewer assignments
on past conferences. They measure review quality by the reviewers’ self-reported expertise and
confidence measures, and demonstrate that textual similarity measures (like the Toronto Paper
Matching System [2, 3]) are more directly relevant to assigning confident and (self-reported) expert
reviewers than bids and keywords.

2 The Approach

We wish to assign experts from a pool of m experts E to tasks from a pool of n tasks Q. The experts
reply to the tasks simultaneously, and have limited time. Each expert e ∈ E can be assigned to up to
ue tasks to ensure a reasonable workload, and each task must be assigned at least vq experts to get a
variety of perspectives.

Every expert e ∈ E who is assigned to the task q ∈ Q responds to the task. These responses are
labeled with a quality label by one or multiple individuals, perhaps users of our community question
answering platform or meta-reviewers in the context of reviewer assignment. To determine a final
quality score for the expert’s response to the task, we map the labels to real values and take the
expected value of the labels. We use a two-stage approach where quality labels map to quality scores
because answer quality labeling tasks are typically discrete. Once we have collected the labels, a
central decision-maker weights the labels using their domain knowledge.

Denote the set of quality labels as L .
= {l1 . . . lk}. For every expert-task pair (e, q), there is a ground

truth probability distribution over labels p(li|(e, q)); p(li | (e, g)) denotes the likelihood that an
annotator will assign the label li to expert e’s response to task q. We write l(e, q) to denote the
random variable that is the label for (e, q). l(e, q) thus represents a single draw from p(li|(e, q)),
or the label provided by a random annotator for e’s response to q. Let function f : L → R denote
the numerical value of each label. The quality score of expert e’s answer to task q is computed as

E
l∼p(li|(e,q))

[f(l)].

An assignment A is an m × n matrix whose entries are in {0, 1}, where the entry Ae,q = 1
if and only if the expert e is assigned to the task q. As we describe earlier, the number of
tasks assigned to the expert e is upper bounded by ue, and thus for every expert e ∈ E,∑
q∈Q

Ae,q ≤ ue. Similarly, since each task q ∈ Q receives at least vq experts, we have∑
e∈E

Ae,q ≥ vq. Let W (A)
.
=

∑
q∈Q

∑
e∈E

Ae,q E
l∼p(li|(e,q))

[f(l)] denote the welfare of assignment

A. Let A .
=

{
A ∈ {0, 1}m×n |

∑
q∈Q

Ae,q ≤ ue,
∑
e∈E

Ae,q ≥ vq

}
. Our goal is to select an assign-

ment A ∈ A that maximizes W (A). Thus, when p is fully known for all (e, q), our goal is to solve
the optimization problem maxA∈A W (A).

Example: StackExchange In StackExchange, users upvote and downvote the answer provided by
e to question q. In that domain, we have L = {Upvote,Downvote}. The true p(Upvote|(e, q)) cannot
be known, but we can estimate it by computing the empirical conditional distribution over votes.
Under this estimate, p(Upvote|Vote, (e, q)) is computed for e’s answer to q as #Upvotes

#Votes . Likewise,

p(Downvote|Vote, (e, q)) can be estimated as #Downvotes
#Votes . One reasonable label value model is to set

f(Upvote) = 1 and f(Downvote) = −1, similarly to how answer scores are computed for display
on the site. However, upvotes are free and only require 15 reputation to cast, while downvotes are
only available to users with at least 125 reputation and cost 1 reputation to cast.1 The decision-
maker could therefore decide to weight downvotes more than upvotes, using f(Upvote) = 1 and
f(Downvote) = −5. Under this second model, if e leaves an answer for q receiving 11 upvotes and
1 downvote, the quality score for the answer is E

l∼p(li|(e,q))
[f(l)] = 11

12 (1) +
1
12 (−5) = .5.

1https://stackexchange.com/tour
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Example: Reviewer Assignment In reviewer assignment, we might ask meta-reviewers to la-
bel the quality of the reviews, using the label set L = {Meets Expectations, Exceeds Expecta-
tions, Fails to Meet Expectations}. When there is only one meta-reviewer per paper, the true
probability of a label is estimated as 1 if assigned and 0 otherwise. A conservative confer-
ence organizer may set f(Fails to Meet Expectations) = −10, f(Meets Expectations) = .8, and
f(Exceeds Expectations) = 1. Under this model, the quality score for any review is in the set
{−10, .8, 1}, since the distribution over labels is deterministic for each review.

3 Learning to Predict Response Quality

The true label distribution p∗(li|(e, q)) (and thus the true welfare function W ∗) is often unknown
prior to making our assignment of experts to tasks. We must estimate a distribution p̂(li|(e, q)) on
existing data, and then apply that learned estimate to make our assignments. We optimize for the
same welfare objective, but with the estimated p̂. We define Ŵ (A)

.
=

∑
q∈Q

∑
e∈E

Ae,q E
l∼p̂(li|(e,q))

[f(l)].

We select the assignment A ∈ A that maximizes Ŵ (A) over A. This problem is a totally unimodular
linear program, and thus the optimal binary solution can be found in polynomial time by relaxing the
space of A from A to [0, 1]|E|×|Q| and solving the corresponding continuous linear program [28].
The optimal continuous solution corresponds to the optimal binary solution.

To learn p̂, we estimate the model in our hypothesis class with the minimum cross-entropy loss.
The cross entropy loss of p̂ with respect to a distribution p for a single expert-task pair (e, q)
is computed as H(p(l|(e, q)), p̂(l|(e, q))) = −

∑
l∈L p(l|(e, q)) log p̂(l|(e, q)). Given a set of t

expert-task pairs T , we can compute the cross-entropy loss of p̂ with respect to p over all T as
1
t

∑
(e,q)∈T H(p(l|(e, q)), p̂(l|(e, q))).

We will train our model p̂ by minimizing the cross-entropy loss on a training set, against the ground
truth distribution p∗ constructed from known labellings. In the context of expertise assignment, the
training data is often not sampled i.i.d. As we will see in Section 4, in StackExchange we typically
construct features for (e, q) pairs from user e’s past answers and the text of the question q. Therefore,
when learning the model p̂(l|(e, q)) for a question q, we use the previously-seen labelled pairs to
construct the features for (e, q). This will require a somewhat non-standard approach for estimating
the generalization error of p̂.

For analysis purposes, we will assume there exists a value γ ∈ R such that the cross-entropy loss
cannot exceed γ for any e and q. This can be achieved by considering a smoothed labelling, such that
each label l has a minimum probability γl under both the true and predicted probability distributions.

3.1 Bounding Assignment Quality

Once we have a predictive model for p̂, we must output a decision using our predicted values. We
can easily solve the problem using the theory of total unimodularity as previously described.

We obtain high probability bounds on the approximation error introduced from optimizing for Ŵ
instead of W ∗. We first evaluate our model p̂’s performance on a test set T sampled from distribution
DTEST. Consider a test set T containing t expert-task pairs (e, q). The cross-entropy loss of p̂ on
the test set is ξ .

= 1
t

∑
(e,q)∈T H(p∗(l|(e, q)), p̂(l|(e, q))). Using the empirical loss ξ, we construct

generalization bounds for any assignment A using McDiarmid’s bounded differences inequality and
likelihood weighting. We cannot apply traditional generalization error bounds based on training set
loss because our training set often does not consist of i.i.d. samples. Given an assignment A, let TA

denote the set of (e, q) pairs such that Ae,q = 1, TA
.
= {(e, q) ∈ E × Q | Ae,q = 1}. We assume

that these pairs are also random variables drawn from some distribution DA, where the support of
DA is E ×Q. We define a matrix Λ ∈ Rm×n such that

Λe,q
.
=

Pr(e,q)∼DTEST
((e,q) = (e, q))

Pr(e,q)∼DA
((e,q) = (e, q))

.

For any distribution p, let H(p, p̂) ∈ Rm×n be a matrix such that H(p, p̂)e,q =
H(p(l|(e, q)), p̂(l|(e, q)). For matrices X,Y ∈ Rm×n, let ⟨X,Y ⟩F

.
=

∑
1≤i≤m,1≤j≤n

Xi,jYi,j de-

note the Frobenius matrix product.

4



We are now ready to state the theorem governing the generalization error of our predictor p̂. Our
generalization error will be in terms of the empirical loss ξ plus an additive error term depending on
a confidence parameter δ.
Theorem 3.1. For any δ ∈ (0, 1), the true probability distribution p∗ satisfies

1

vqn
⟨A, ⟨Λ, H(p∗, p̂)⟩F⟩F ≤ ξ +

√√√√√γ2 ln 1
δ

2

1

t
+

1

v2qn
2

∑
(e,q)∈TA

Λ2
e,q


with probability at least 1− δ.

We prove Theorem 3.1 in Section 8.

Once we have a candidate assignment A that maximizes Ŵ (A), we can apply Theorem 3.1 to give
high probability lower and upper bounds on W ∗(A) by maximizing or minimizing W (A) over the
region defined by Theorem 3.1. This problem is a linear program and can be solved using off-the-shelf
solvers.

4 Predicting Answer Quality

Our experiments focus on publicly available StackExchange data.2 We study the com-
puter science (cs.stackexchange.com), biology (biology.stackexchange.com), chemistry
(chemistry.stackexchange.com), and academia (academia.stackexchange.com) StackEx-
changes. Results are presented in the main body of the text using the CS StackExchange; the other
StackExchanges show similar patterns and results are reported in Section 10.

We represent users using their profiles and their past answers. Detailed statistics about the dataset
times, number of questions and answers, etc are included in Section 9.

We target the community votes on answers as a measure of answer quality. Because users lose 1
reputation point for every downvote cast,3 we view downvotes as a stronger signal of answer quality
than upvotes. We set f(Upvote) = 1 and f(Downvote) = −5.

Altogether, we have 22 features employed by the model. Because we represent users using their
previous answers, the features are constructed for each question-answer pair sequentially. Each
training point consists of a question q, and a user e that responded to that task at any point in time
and has answered at least 1 previous question. Our model incorporates user reputation, number of
total views of user’s profile, number of upvotes the user has issued, number of downvotes the user
has issued, the average time taken to answer questions prior to the current one, mean reciprocal rank
for answers posted on previous questions, average view count for questions previously answered,
average absolute score for previous answers (upvotes minus downvotes), the number of accepted
answers/(total number of answers + c), the average usefulness, relevance, and informativeness of
past answers as annotated by the Vicuna-7B large language model [30, 32], and the 0, 5, 10, 25, and
50 percentile for # Upvotes

# Votes on all previous answers. We refer to the latter five features as the past
p(Upvote) distribution as a shorthand, though for each answer # Upvotes

# Votes is only an estimate of the
true conditional distribution of p(Upvote|Vote, (e, q)). We run the Vicuna language model feature
annotation for up to 10 days on each dataset on an RTX8000 or A100 GPU on a local computing
cluster, and we run the cosine embedding similarity using SentenceTransformer on the same hardware
for up to 3 days per dataset. More details about the annotation process for usefulness, relevance, and
informativeness are included in Section 7.1.

We also include pairwise features of the question and the user, to identify content-based similarity.
We collect the set of all of the user’s previous answers. We represent each user as a weighted
bag of keyword tags on the questions they have previously answered, and we represent the current
question as a bag of tags. We can then compute the keyword similarity score as the product of
the number of matching tags times the total count of the matching tags (following [29]). We
also embed all question titles, question bodies, and answer bodies using the SentenceTransformer

2The data is available at https://archive.org/details/stackexchange under a cc-by-sa 4.0 license
(https://creativecommons.org/licenses/by-sa/4.0/). We accessed this page on December 18, 2023.

3https://stackexchange.com/tour
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Table 1: Predictive performance of each model on the test set. All models except the Similarity and
Reputation baseline attempt to predict p(Upvote|Vote, (e, q)). P@100 and AUROC are computed
assuming that a positive example is one with no downvotes, and a negative example is one with at
least one downvote. The Kendall’s τ and Spearman’s ρ statistics are calculated between the ranking
produced by each model and the true ranking over all test examples by p(Upvote|Vote, (e, q)). All τ
and ρ statistics are statistically significant with a p-value of less than .001.

Model XE (↓) τ (↑) ρ (↑) P@100 (↑) AUROC (↑)

Constant .0890 – – .94 .5000
Constant (per User) .1028 .0850 .0866 .94 .5308
Similarity and Reputation – .0828 .1029 .98 .6221

Logistic Regression (Badges) .0922 .1001 .1245 .95 .6461
User Embeddings .1054 .1331 .1653 .98 .6964

Logistic Regression (All) .0802 .1472 .1824 .97 .7155

multi-qa-mpnet-base-cos-v1 model [18].4 We then include the mean and maximum cosine
similarity between the current question title and the titles of questions the user previously answered,
as well as the mean and maximum cosine similarity between the current question’s body and the
bodies of the user’s previous answers.

We train a logistic regression model5 on the training set to minimize the cross-entropy loss against
the true distribution over labels for each user-question pair. For each pair (e, q), we compute the
empirical conditional distribution p(Upvote|Vote, (e, q)) .

= # Upvotes
# Votes and p(Downvote|Vote, (e, q)) .

=
# Downvotes

# Votes , and use this distribution over labels as the target distribution.

We train two baseline models that use less information about the users’ history compared to the
full logistic regression model. In some domains, like reviewer assignment, the user’s history may
be considered private. Ideally, we could obtain strong predictive performance even without storing
this private information. The Logistic Regression (Badges) model uses a count vector of the badges
awarded to the user instead of all features except for the user-answer textual cosine similarity measures,
and the tag-based similarity measure. The User Embeddings model uses randomly-initialized user
embeddings in place of all features except for the user-answer textual similarity measures, and the
tag-based similarity measure. This model is trained using a 2-layer feed-forward neural network with
sigmoid activations. It is trained over 400 epochs using the Adam optimizer [9]. All data processing
and model training and evaluation in this section were performed on a Dell XPS laptop with a Intel(R)
Core(TM) i5-10300H CPU @ 2.50GHz processor and 8GB RAM.

4.1 Label Classification Performance

After training the logistic regression model, we evaluate the cross-entropy loss on the test set. We
also compare against two baseline approaches. The Constant model predicts the average empirical
p(Upvote|Vote, (e, q)) over the training set for each sample in the test set. The Constant (per User)
model predicts the user’s empirical average p(Upvote|Vote, (e, q)) up to the point in time of the
question. Note that order statistics of the user’s empirical conditional probability of receiving an
upvote are also included as features in our logistic regression model. We report the cross-entropy loss
on the test set in Table 1. Our trained model outperforms all the baselines, but the predictive models
that use only badges or user embeddings are close to the performance of the full predictive model.

4.2 Feature Importance

We investigate the coefficients of the logistic regression model in Figure 1a. Figure 1b shows the
feature importance for each feature in our model using the exact computation of the Shapley value
[23]. The Shapley value of a feature x measures the average marginal decrease in test-set cross
entropy loss when training the logistic regression model using a set of features S ∪ {x} compared

4https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1.
5https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegression.html
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(a) Logistic regression model coefficients.
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(b) Shapley values for features, measured as the
average marginal contribution of the feature to de-
creasing cross entropy loss on the test set.

Figure 1: Logistic regression model coefficients and Shapley values on the test sets.

to using the set of features S \ {x}. We compute Shapley value on a computing cluster with Xeon
E5-2680 v4 @ 2.40GHz with 128GB RAM, requesting up to 32GB for up to 6 days.

The top three features by both measures are measures of quality for the user’s previous answers. Dis-
tributional measures of p(Upvote|Vote, (e, q)) over the user’s past answers are incredibly important
for predicting future p(Upvote|Vote, (e, q)). In addition, the ratio of accepted answers written by the
user to total answers written by the user, as well as the mean reciprocal rank of answers written by
the user are both very important.

All features contribute meaningfully to reducing cross-entropy loss on the test set. This finding should
encourage decision makers to collect and leverage as much information as is available in constructing
predictive models of performance.

One likely explanation for the relative unimportance of topic-based features is the (extreme) sampling
bias in StackExchange data. Our (e, q) pairs consist only of answers that were actually submitted on
the website. If a user e does not have the expertise or interest to answer question q, he or she simply
will not answer that question. Topical similarity is likely more useful for predicting whether a user e
would naturally answer question q. These measures are less useful in determining the probability that
user e provides a high quality answer to question q, conditioned on the fact that they chose to answer
the question. As we will see in Section 5, this sampling bias does not preclude our model from being
very useful in making assignments.

5 Making and Evaluating Assignments using the Predictive Model

We also use the test set to evaluate the overall assignment quality when assigning for predicted
answer quality. We assume that all questions in the test set are received simultaneously, immediately
following the end of the time period of the training set. Thus, each user’s past answers (used in
computing user and pairwise user-task features) are limited to only the answers to the first 80% of
questions by time of posting. This difference from the training set allows us to simulate testing on
multiple questions without interdependence between questions, and shows the trade-offs required
when assigning users with limited resources to many cold questions.

Overall, to evaluate assignments we include n = 1,402 questions (our set of tasks Q) and the
m = 220 users who answered any of those questions and have answered at least one question
before (our set of experts E). For robustness, we take 1,000 samples of 60% of the questions and
60% of the users, and report the distributions of all evaluation metrics across all 1,000 runs. For
each assignment, we evaluate 12 metrics: p̂(Upvote|Vote, (e, q)) under our predictive model, worst-
case p(Upvote|Vote, (e, q)) according to Theorem 3.1 with δ = .1, 5th percentile and median of
user’s historical p(Upvote|Vote, (e, q)), number of user-question pairs that are observed in reality,
average cosine similarity between user’s past answers and question body, average keyword matching

7



Predictive User Embs Badges Non-pred Random

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pr
ed

ic
te

d 
Sc

or
e 

(L
B

)

(a) Performance on the lower
bound of predicted score, with
probability at least 90%.

Predictive User Embs Badges Non-pred Random

0.92

0.94

0.96

0.98

1.00

M
ed

ia
n 

Pa
st

 p
(U

pv
ot

e)

(b) Performance measured by the
median p(Upvote|Vote) on user’s
previous answers.

Predictive User Embs Badges Non-pred Random

10

20

30

40

50

60

70

R
ec

ov
er

ed
 P

ai
rs

(c) Performance on number of re-
covered user-question pairs.

Figure 2: Performance of predictive assignment, non-predictive assignment (with .5 weight on user
reputation and .5 weight on embedding similarity), and random assignments. The predictive model
outperforms the others on a wide range of metrics; see Section 10 for more details.

score, average assigned reputation score for assigned users, true p(Upvote|Vote, (e, q)) for recovered
pairs, and the average usefulness, relevance, and informativeness for assigned users’ past answers.
These metrics capture a wide range of automated measures for assignment quality, including topical
similarity between the users and questions, and the users’ propensities to leave satisfying answers.

We compare the assignment made using our predictive model to baseline assignments made without
predictions. While the predictive model makes assignments according to the distribution p̂(l|(e, q))
for all (e, q) ∈ (E ×Q), our baselines must construct alternate scores for all (e, q) ∈ (E ×Q). We
construct the baseline to mirror standard expert assignment approaches, where a linear combination
of topical match scores and user characteristics are used for assignment (as in reviewer assignment,
which typically employs keyword match scores, bids, and document-based similarity scores [11]).
We set the value for each (e, q) pair to be λ x1(e)

maxe∈E x1(e)
+(1−λ) x2(e,q)

max(e,q)∈(E×Q) x2(e,q)
, where x1(e)

is the reputation of e and x2(e, q) is the cosine similarity score between the answer bodies for e and q.
We set λ = .5 based on initial experiments varying λ over [0, 1] in increments of 0.1. In addition, we
also compute 100 random values for each (e, q) pair drawn from the uniform distribution U[0,1]. We
set the number of experts per task to vq = 2, and the number of tasks per expert to ue = 26 (twice
the smallest integer such that mue ≥ nvq).

To compute the worst-case and best-case bounds for the predictive assignment model (according to
Theorem 3.1), we set δ = .1. We estimate the cross entropy loss on the 1,666 labeled question-answer
pairs in the test set. We estimate the distribution DTEST over the test set by fitting a 2-component
principal component analysis on the test data and then applying kernel density estimation on the
transformed features. We also estimate the distribution DA over the pairs in TA for each assignment
A using the same procedure.

Figure 2 shows a the distributions of three metrics over all 1,000 repeated experiments for the
predictive assignment, the baseline with λ = .5, and the 100 random assignments (there are 100,000
runs reported in each plot for the random assignments). We report the lower bound computed using
Theorem 3.1, the median of the assigned user’s historical p(Upvote|Vote, (e, q)), as well as the
number of recovered pairs which is the number of assigned (e, q) pairs where e actually answered
q on the website. Nine additional metrics are reported in Section 10. In Section 10 we also report
experimental results for the biology, chemistry, and academia StackExchange datasets.

Overall, we find that the assignments made using the predicted answer scores strongly and robustly
outperform most baselines on expected and worst-case predictive score, order statistics of user’s past
probability of upvote, user’s average usefulness, informativeness, and relevance over past answers.
However, the baseline using trained user embeddings performs very well on the objectives that
measure user behavior without considering content similarity. The predictive and the baseline models
both achieve nearly 1.00 probability of upvote on recovered pairs (as can be seen from Figure 2,
there are few of these relative to the dataset size anyway). Since most answers receive very few
downvotes in this StackExchange, it would be very instructive to perform future experiments on
datasets with higher baseline failure probabilities. The baseline outperforms the predictive model on
text embedding cosine similarity, but the predictive model still generally has a decently-high average
cosine similarity.
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5.1 Metric Correlation Analysis

To further understand the trade-offs between evaluation metrics, we rank the assignment approaches
using each metric for each of our 1,000 experiment repetitions. We then study the correlation
between rankings produced by each metric. Correlations and p-values for all four StackExchanges
are displayed in Section 10.1, along with a more detailed explanation of the procedure for calculating
these correlations.

The rankings produced under p̂ are generally highly correlated with the rankings produced by order
statistics of the user’s past p(Upvote), user reputation, and the average LLM-annotated usefulness,
relevance, and informativeness. This further bolsters our finding in the previous section that these
historical features are highly informative for predicting the future probability of an upvote. The
metric producing rankings most correlated with the rankings produced by the Recovered Pairs metric
is the Keyword Match Score metric, suggesting again that textual similarity is predictive of whether a
user would naturally answer a question (but this does not mean that this feature is predictive of their
response quality given that they chose to answer this question). Finally, we see that the similarity
score produces rankings that are generally negatively correlated wth rankings produced by measures
of user competence (reputation with correlation −.7, and order statistics of past probability of upvote
with correlation −.7 and −1.0). This dynamic suggests that perhaps assignments yielding content
similarity may sacrifice user competence. StackExchange uses tags to recommend questions to
users, and conference management platforms like Microsoft CMT compute keyword-based similarity
measures, so this dynamic is incredibly worthy of further study.

6 Discussion

An ideal evaluation setting would make multiple assignments, have the assigned people write a
response, and see how many upvotes they receive. It is not currently possible to run this experiment
through StackExchange, and such an experiment would be very expensive in reviewer assignment.
However, our 11 automated metrics demonstrate that the predictive model incorporates multiple
elements of user suitability in a satisfying way.

Our approach requires access to historic behavior for every user. While this is routine for StackEx-
change, this information is harder to access in privacy-sensitive areas like peer review. Reviewers may
not be comfortable with sharing review performance history with systems like CMT or OpenReview
without additional assurances, and this persistent state would require additional consent. However,
many conferences have persistent organizing teams that retain access to review data from prior
years, and with proper consent these conferences could simply make use of this already accessible
information. Multiple research studies have expressed concerns that high-quality data about peer
review is incredibly difficult to obtain [5, 15]. We hope that the current work encourages further
study of the connections between input and output measures in other areas of expert assignment, and
that conferences in particular will be encouraged to cooperate further with researchers to understand
how decisions made during reviewer assignment impact downstream metrics of review quality.

7 Conclusion

We find defining metrics of interest and then optimizing for the predicted values of those metrics
is more effective than optimizing for variables that are available prior to assignment. We give
probabilistic bounds on the quality of such assignments, ensuring that the metric is optimized with
high probability. Historic measures of answer quality prove to be the most important predictors
of future answer quality; this finding can have important implications for expert recommendation
in StackExchange as well as reviewer assignment for peer review. Although different measures of
assignment quality can result in different results, the predictive model-based assignments outperform
baseline approaches across a wide range of metrics. The correlations between the rankings produced
by different metrics reveal important connections between these competing or complementary
objectives; notably, we find some indication that assigning for content similarity may conflict with
assigning for user competency. These trade-offs can be incorporated directly into a predictive model,
such as the one proposed in the current study.
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Appendix

7.1 Annotation of Usefulness, Relevance, and Informativeness

We also score all question-answer pairs for usefulness, informativeness, and relevance using Vicuna,
released August 2023. These three criteria were found to be the most highly correlating criteria
with overall answer quality in a survey of experts on community question answering [33]. Using
these annotations, for each question-answer pair we compute the mean usefulness, relevance, and
informativeness scores on the user’s past answers. These scores are used as input features for our
predictive model, but we also apply them as part of our automated assignment evaluation.

For all question-answer pairs, we set the system prompt for the Vicuna model as:

I am go ing t o p r o v i d e you wi th a q u e s t i o n − answer p a i r from t h e cs
S tackExchange . P l e a s e a n n o t a t e t h e i n f o r m a t i v e n e s s , r e l e v a n c e ,

and u s e f u l n e s s o f t h e answer . Your r e s p o n s e s h o u l d r a t e each
of t h e s e t h r e e a s p e c t s on a s c a l e from 1 −5 , wi th 1 b e i n g t h e
l e a s t and 5 b e i n g t h e most . P l e a s e s t r u c t u r e your r e s p o n s e by
o u t p u t t i n g t h e i n f o r m a t i v e n e s s , t h e n t h e r e l e v a n c e , and t h e n
t h e u s e f u l n e s s , one p e r l i n e . P l e a s e add an a d d i t i o n a l
e x p l a n a t i o n o f your r a t i n g s . I n f o r m a t i v e n e s s a s k s Does t h i s
answer p r o v i d e enough i n f o r m a t i o n f o r t h e q u e s t i o n ? Re levance
a s k s I s t h i s answer r e l e v a n t t o t h e q u e s t i o n ? U s e f u l n e s s a s k s
I s t h i s answer u s e f u l o r h e l p f u l t o a d d r e s s t h e q u e s t i o n ? Use
t h i s t e m p l a t e f o r your o u t p u t : \ n I n f o r m a t i v e n e s s : < Rat ing > \
nRe levance : < Rat ing > \ n U s e f u l n e s s : < Ra t ing > \ n E x p l a n a t i o n : <
A d d i t i o n a l E x p l a n a t i o n > \ n \ n

We then prompt the model as the user:

Q u e s t i o n : \ n T i t l e : < Q u e s t i o n T i t l e > \ n \ nBody : < Q u e s t i o n Body >\ n \
nAnswer : \ n<Answer Body >\ n

Inserting the question title, question body, and answer body where appropriate.

8 Proof of Main Theorem

Theorem 3.1. For any δ ∈ (0, 1), the true probability distribution p∗ satisfies

1

vqn
⟨A, ⟨Λ, H(p∗, p̂)⟩F⟩F ≤ ξ +

√√√√√γ2 ln 1
δ

2

1

t
+

1

v2qn
2

∑
(e,q)∈TA

Λ2
e,q


with probability at least 1− δ.
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Proof. We bound

Z
.
=

1

vqn
⟨A, ⟨Λ, H(p∗, p̂)⟩F⟩F − ξ

=
1

vqn

∑
(e′,q′)∈TA

Λe′,q′H(p∗(l|(e′, q′)), p̂(l|(e′, q′)))− 1

t

∑
(e,q)∈T

H(p∗(l|(e, q)), p̂(l|(e, q))) .

First, we show that E[Z] = 0. Recall that for all (e′, q′) ∈ TA, (e′, q′) ∼ DA, and that for all
(e, q) ∈ T , (e, q) ∼ DTEST. Thus,

E
(e,q)∼DTEST,(e′,q′)∼DA

[Z] = E
(e′,q′)∼DA

 1

vqn

∑
(e′,q′)∈TA

Λe′,q′H(p∗(l|(e′, q′)), p̂(l|(e′, q′)))


− E

(e,q)∼DTEST

1

t

∑
(e,q)∈T

H(p∗(l|(e, q)), p̂(l|(e, q)))

 .

Let

X
.
= E

(e′,q′)∼DA

 1

vqn

∑
(e′,q′)∈TA

Λe′,q′H(p∗(l|(e′, q′)), p̂(l|(e′, q′)))


We have that,

X =
1

vqn

∑
(e′,q′)∈TA

E
(e′,q′)∼DA

[Λe′,q′H(p∗(l|(e′, q′)), p̂(l|(e′, q′)))]

=
1

vqn

∑
(e′,q′)∈TA

E
(e,q)∼DTEST

[H(p∗(l|(e, q)), p̂(l|(e, q)))]

=
1

t

∑
(e,q)∈T

E
(e,q)∼DTEST

[H(p∗(l|(e, q)), p̂(l|(e, q)))]

= E
(e,q)∼DTEST

1

t

∑
(e,q)∈T

H(p∗(l|(e, q)), p̂(l|(e, q)))


Now that we have shown E[Z] = 0, we apply McDiarmid’s method of bounded differences to obtain
a tail bound on Z [13], as Z is a function of negatively-dependent random variables. To use this
method, we bound the impact of changing any of the random variables in Z. We assume that the
cross-entropy loss cannot exceed γ for a single sample, so t terms in Z contribute at most γ

t each,
and each of the first vqn terms contribute at most γΛe,q

vqn
for each (e, q) ∈ TA. The sum of the squared

bounded differences is

γ2

1

t
+

1

v2qn
2

∑
(e,q)∈TA

Λ2
e,q

 ,

which implies finally that

Pr

Z ≥

√√√√√γ2 ln 1
d

2

1

t
+

1

v2qn
2

∑
(e,q)∈TA

Λ2
e,q


 ≤ δ .

9 Details of Dataset

For each question, we compute features representing each user’s topical affinity for the question
and overall answering proficiency. Using these features, we predict labels of answer quality. We
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Table 2: Predictive performance of each model on the test set for biology.

Model XE (↓) τ (↑) ρ (↑) P@100 (↑) AUROC (↑)

Constant .1470 – – .88 .5000
Constant (per User) .1688 .0381 .0399 .87 .5150
Similarity and Reputation – .0759 .0962 .85 .5771

Logistic Regression (Badges) .1531 .0987 .1253 .9 .6036
User Embeddings .1613 .1046 .1323 .9 .6070

Logistic Regression (All) .1363 .1225 .1547 .9 .6221

Table 3: Predictive performance of each model on the test set for chemistry.

Model XE (↓) τ (↑) ρ (↑) P@100 (↑) AUROC (↑)

Constant .1408 – – .86 .5000
Constant (per User) .1582 .1319 .1364 .88 .5545
Similarity and Reputation – .1246 .1563 .97 .6455

Logistic Regression (Badges) .1624 .0906 .1136 .94 .6025
User Embeddings .1381 .1078 .1351 .97 .6250

Logistic Regression (All) .1177 .1767 .2206 .96 .7056

construct a train and test set for building our predictive model of answer quality. We then evaluate the
model’s performance for labeling the test set. We also construct an assignment problem using the
set of test questions, and use our predicted distribution over labels to assign a set of users to these
questions. This setting simulates assigning users from a pool to the set of cold questions. We evaluate
the assignments using the theoretical bounds developed in this paper and by comparing multiple
automated metrics of assignment.

We first filter the questions and answers for quality. We select all questions that have an accepted
answer and have a score of at least 3, where the score is computed by adding 1 for each upvote and
subtracting 1 for each downvote. We sort the questions by creation time. The first 10% of questions
are used to initialize user representations. The next 70% of questions are used as the training set, and
the remaining 20% as the test set.

The CS StackExchange includes questions from November 25, 2008 to December 2, 2023. The
training set starts at November 30, 2012 and contains 7045 question-answer pairs from 4831 unique
questions. The test set starts at February 5, 2019 and contains 1666 question-answer pairs from 1182
unique questions.

10 Additional Metrics and all StackExchanges

Results indicating the power of the statistical models are shown in Tables 2 to 4.

Table 4: Predictive performance of each model on the test set for academia.

Model XE (↓) τ (↑) ρ (↑) P@100 (↑) AUROC (↑)

Constant .2403 – – .77 .5000
Constant (per User) .2848 .0400 .0437 .77 .5089
Similarity and Reputation – −.0004 −.0003 .69 .4878

Logistic Regression (Badges) .3255 .0480 .0640 .67 .5292
User Embeddings .2860 .1199 .1546 .8 .5969

Logistic Regression (All) .2403 .1060 .1384 .83 .5708
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Figure 3: Additional metrics for computer science. Performance of predictive assignment, non-
predictive assignment (with .5 weight on user reputation and .5 weight on embedding similarity), and
random assignments on 5th percentile of user’s historical probability of upvote given vote, average
cosine similarity between user’s past answers and question body, keyword matching score, user’s
reputation score, true p(Upvote|Vote, (e, q)) for recovered pairs, p̂(Upvote|Vote, (e, q)), and user’s
average usefulness, relevance, and informativeness as rated by Vicuna-7B on past answers.

Figure 3 shows the performance distribution of the predictive assignment, non-predictive baseline with
λ = .5, and random assignments, over 1,000 subsamples of the Computer Science StackExchange
test set. Although the non-predictive baseline does best on the embedding-based similarity measure,
the predictive assignment is much better on most other metrics. Note that Figure 3e computes the true
p(Upvote) based on only the user-question pairs that were present on the website, and is likely a very
biased and high-variance measure of the true underlying probability of an upvote for the assigned
pairs.

10.1 Correlation of Rankings

For each of the 1,000 experimental runs, we compute the ranking of assignment methods under
each of 11 metrics. The assignment methods are the predictive method, the baseline with λ ∈ [0, 1]
stepping by .1, and random. For metrics, we exclude the average empirical probability of an upvote
for recovered pairs, as it is based on a small number of recovered pairs and equals 1.0 for a majority
of assignments. This results in 11,000 rankings over 13 assignment methods. We then compute the
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Figure 4: Metrics for biology. Performance of predictive assignment, non-predictive assignment (with
.5 weight on user reputation and .5 weight on embedding similarity), and random assignments on pre-
dicted value (expected and worst-case at 90% confidence), recovered user-query pairs, 5th percentile
of user’s historical probability of upvote given vote, average cosine similarity between user’s past an-
swers and question body, keyword matching score, user’s reputation score, true p(Upvote|Vote, (e, q))
for recovered pairs, and user’s average usefulness, relevance, and informativeness as rated by Vicuna-
7B on past answers.
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Figure 5: Additional metrics for chemistry. Performance of predictive assignment, non-predictive
assignment (with .5 weight on user reputation and .5 weight on embedding similarity), and random
assignments on predicted value (expected and worst-case at 90% confidence), recovered user-query
pairs, 5th percentile of user’s historical probability of upvote given vote, average cosine similarity
between user’s past answers and question body, keyword matching score, user’s reputation score, true
p(Upvote|Vote, (e, q)) for recovered pairs, and user’s average usefulness, relevance, and informative-
ness as rated by Vicuna-7B on past answers.
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Figure 6: Additional metrics for academia. Performance of predictive assignment, non-predictive
assignment (with .5 weight on user reputation and .5 weight on embedding similarity), and random
assignments on predicted value (expected and worst-case at 90% confidence), recovered user-query
pairs, 5th percentile of user’s historical probability of upvote given vote, average cosine similarity
between user’s past answers and question body, keyword matching score, user’s reputation score, true
p(Upvote|Vote, (e, q)) for recovered pairs, and user’s average usefulness, relevance, and informative-
ness as rated by Vicuna-7B on past answers.
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Figure 7: Correlation of ranking of assignments by each metric for computer science StackExchange.
Higher values indicate a stronger positive correlation between rankings produced by the two metrics,
while lower negative values indicate stronger negative correlation between rankings. Values close to
0 indicate less correlation overall.

Spearman’s ranking coefficient [24] between each pair of rankings, giving us an understanding of
both the robustness of each metric and the correlations in rankings across metrics.

Figure 7 displays the average correlations (over 1,000 samples) of the rankings over assignments
produced by each metric. High positive values indicate the metrics tend to rank assignments in the
same order, low negative values indicate the metrics tend to rank assignments in opposite order.
Values near zero indicate low correlation in rankings in either direction. The p-value of these statistics
is displayed in Figure 8. Similar results are shown for the other StackExchanges in Figures 9 to 14.
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0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.5

0.4 0.1 0.1 0.0 0.1 0.0 0.2 0.2 0.0 0.1 0.0

0.3 0.0 0.1 0.0 0.1 0.1 0.2 0.2 0.1 0.0 0.0

0.8 0.1 0.2 0.0 0.2 0.1 0.3 0.5 0.0 0.0 0.0

Figure 8: P-values for correlation of ranking of assignments by each metric for computer science
StackExchange. Only the pairs with p-values close to 0 are statistically significant.
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Figure 9: Correlation of ranking of assignments by each metric for biology. Higher values indicate a
stronger positive correlation between rankings produced by the two metrics, while lower negative
values indicate stronger negative correlation between rankings. Values close to 0 indicate less
correlation overall.
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Figure 10: P-values for correlation of ranking of assignments by each metric for biology. Only the
pairs with p-values close to 0 are statistically significant.
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Figure 11: Correlation of ranking of assignments by each metric for chemistry. Higher values
indicate a stronger positive correlation between rankings produced by the two metrics, while lower
negative values indicate stronger negative correlation between rankings. Values close to 0 indicate
less correlation overall.

23



Similarity

Past Relevance

Past Informativeness

Keyword Match Score

Recovered Pairs

Median Past p(Upvote)

User Reputation

Predicted Score (Expected)

Predicted Score (LB)

Past Usefulness

5 th Percentile Past p(Upvote)

Similarity

Past Relevance

Past Informativeness

Keyword Match Score

Recovered Pairs

Median Past p(Upvote)

User Reputation

Predicted Score (Expected)

Predicted Score (LB)

Past Usefulness

5th Percentile Past p(Upvote)

0.0 0.2 0.1 0.6 0.7 0.0 0.0 0.0 0.0 0.2 0.2

0.2 0.0 0.0 0.5 0.5 0.2 0.2 0.2 0.2 0.3 0.3

0.1 0.0 0.0 0.3 0.4 0.1 0.1 0.1 0.1 0.4 0.3

0.6 0.5 0.3 0.0 0.0 0.3 0.0 0.1 0.1 0.2 0.4

0.7 0.5 0.4 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.4

0.0 0.2 0.1 0.3 0.3 0.0 0.0 0.0 0.0 0.1 0.2

0.0 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.2

0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.2

0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.2

0.2 0.3 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.2

0.2 0.3 0.3 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.0

Figure 12: P-values for correlation of ranking of assignments by each metric for chemistry. Only the
pairs with p-values close to 0 are statistically significant.

24



Similarity

5 th Percentile Past p(Upvote)

Recovered Pairs

Keyword Match Score

Median Past p(Upvote)

Predicted Score (Expected)

Predicted Score (LB)

User Reputation

Past Informativeness

Past Usefulness

Past Relevance

Similarity

5th Percentile Past p(Upvote)

Recovered Pairs

Keyword Match Score

Median Past p(Upvote)

Predicted Score (Expected)

Predicted Score (LB)

User Reputation

Past Informativeness

Past Usefulness

Past Relevance

1.0 0.4 -0.1 -0.6 -1.0 -1.0 -1.0 -0.8 -0.8 -0.9 -0.9

0.4 1.0 -0.1 -0.0 -0.4 -0.4 -0.4 -0.4 -0.2 -0.3 -0.3

-0.1 -0.1 1.0 0.7 0.2 0.2 0.2 0.5 0.4 0.4 0.4

-0.6 -0.0 0.7 1.0 0.7 0.7 0.7 0.8 0.8 0.8 0.8

-1.0 -0.4 0.2 0.7 1.0 1.0 1.0 0.9 0.9 0.9 0.9

-1.0 -0.4 0.2 0.7 1.0 1.0 1.0 0.9 0.9 0.9 0.9

-1.0 -0.4 0.2 0.7 1.0 1.0 1.0 0.9 0.9 0.9 0.9

-0.8 -0.4 0.5 0.8 0.9 0.9 0.9 1.0 0.9 0.9 0.9

-0.8 -0.2 0.4 0.8 0.9 0.9 0.9 0.9 1.0 0.9 1.0

-0.9 -0.3 0.4 0.8 0.9 0.9 0.9 0.9 0.9 1.0 1.0

-0.9 -0.3 0.4 0.8 0.9 0.9 0.9 0.9 1.0 1.0 1.0

Figure 13: Correlation of ranking of assignments by each metric for academia. Higher values
indicate a stronger positive correlation between rankings produced by the two metrics, while lower
negative values indicate stronger negative correlation between rankings. Values close to 0 indicate
less correlation overall.
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Similarity

5th Percentile Past p(Upvote)

Recovered Pairs

Keyword Match Score

Median Past p(Upvote)

Predicted Score (Expected)

Predicted Score (LB)

User Reputation

Past Informativeness

Past Usefulness

Past Relevance

0.0 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.5 0.6 0.2 0.2 0.2 0.2 0.4 0.3 0.3

0.6 0.5 0.0 0.0 0.6 0.6 0.6 0.1 0.2 0.2 0.2

0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 14: P-values for correlation of ranking of assignments by each metric for academia. Only the
pairs with p-values close to 0 are statistically significant.
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