Into the Unknown: Assigning Reviewers to Papers with Uncertain Affinities

Cyrus Cousins

Justin Payan

Yair Zick

Peer Review

Papers must be reviewed by suitable reviewers

Reviewer Assignment Problem

Given affinity scores

8

8

Paper Requirements:

3

Reviewer Load Bounds:

Conflicts of interest:

Goal:

Allocation of reviewers to papers with high affinity

What are affinity scores?

For given reviewer-paper pair the affinity score measures:

Reviewer interest

Reviewer expertise

As proxies for:

Predicted review quality

What are affinity scores?

For given *reviewer-paper pair* – the affinity score measures:

Reviewer interest

Reviewer expertise

As proxies for:

Predicted review quality

Hard to measure/predict

Compute an uncertainty set $\mathcal S$ s.t. true, unknown affinity scores $\mathcal S$ are contained in $\mathcal S$ with prob. $1-\delta$

Compute an uncertainty set $\mathcal S$ s.t. true, unknown affinity scores $\mathcal S$ are contained in $\mathcal S$ with prob. $1-\delta$

Compute an uncertainty set $\mathcal S$ s.t. true, unknown affinity scores $\mathcal S$ are contained in $\mathcal S$ with prob. $1-\delta$

Maximize the worst-case welfare over the uncertainty set

Papers P and reviewers RValid assignments $\mathcal{A} \subseteq \{0,1\}^{|P| \times |R|}$ Affinity score uncertainty set $\mathcal{S} \subseteq \mathbb{R}_+^{|P| \times |R|}$

$$USW(A,S) = \frac{1}{|P|} \sum_{p \in P} \sum_{r \in R} A_{pr} S_{pr}$$

Objective: $\max_{A \in \mathcal{A}} \min_{S \in \mathcal{S}} USW(A, S)$

Papers P and reviewers RValid assignments $\mathcal{A} \subseteq \{0,1\}^{|P|\times|R|}$ Affinity score uncertainty set $\mathcal{S} \subseteq \mathbb{R}_+^{|P|\times|R|}$

$$USW(A,S) = \frac{1}{|P|} \sum_{p \in P} \sum_{r \in R} A_{pr} S_{pr}$$

Objective: $\max_{A \in \mathcal{A}} \min_{S \in \mathcal{S}} USW(A, S)$

Why Maximin?

Why Maximin?

May not always know expected affinities

Theory and experiments show maximin corresponds to *true* welfare

Implementing RAU: Bid Prediction

Solicit bids

Collaborative Filtering with Average Error Guarantees

Implementing RAU: Review Quality Prediction

Label past assignments

Learn function from reviewer and paper features to affinities

Apply *f* with error bounds

Transductive Predictors (CF on Bids)

$$S = \{S: (S - \hat{S})^T \Sigma^{-1} (S - \hat{S}) / nm \le \hat{\xi} + \eta_t \}$$

Inductive Predictors (Learned *f* from Data)

$$S = \{S: \left(S - \hat{S}\right)^T \Sigma^{-1} (S - \hat{S}) / nm \le \hat{\xi} + \eta_i\}$$

Transductive Predictors (CF on Bids)

$$S = \{S: \left(S - \hat{S}\right)^T \Sigma^{-1} (S - \hat{S}) / nm \le \hat{\xi} + \eta_t\}$$

Inductive Predictors (Learned *f* from Data)

$$S = \{S: \left(S - \hat{S}\right)^T \Sigma^{-1} (S - \hat{S}) / nm \le \hat{\xi} + \eta_i\}$$

Intersecting Uncertainty Sets

$$p(S \in \mathcal{S}) = 1 - (\delta_1 + \delta_2)$$

Expanding Uncertainty Sets

RAU is NP-hard

Theorem 1: RAU is NP-hard for convex uncertainty sets $\mathcal S$

RAU is NP-hard

Theorem 1: RAU is NP-hard for convex uncertainty sets \mathcal{S}

Nonlinear objective $\max_{A \in \mathcal{A}} \min_{S \in \mathcal{S}} USW(A, S)$

Robust Reviewer Assignment (RRA)

Relax discrete allocations -> continuous

$$\mathcal{A} \subseteq \{0,1\}^{m \times n} \rightarrow \tilde{\mathcal{A}} \subseteq [0,1]^{m \times n}$$

Projected subgradient-ascent optimization

Solve $\max_{A \in \tilde{\mathcal{A}}} \min_{S \in \mathcal{S}} USW(A,S)$ by stepping in $\partial_A \min_{S \in \mathcal{S}} USW(A,S)$ and projecting back to $\tilde{\mathcal{A}}$

Randomized rounding for discrete solution

Round $A \in \tilde{\mathcal{A}}$ to $A' \in \mathcal{A}$

Define

 \tilde{A} : the continuous maximin solution

A': the rounding of \tilde{A}

 S^* : the true affinity score matrix

 A^* : the true optimal allocation

L: \mathcal{L}_1 -diameter of \mathcal{S}

 $\delta \colon \mathbb{P}(S^* \in \mathcal{S}) \ge 1 - \delta$

Define

 \tilde{A} : the continuous maximin solution

A': the rounding of \tilde{A}

 S^* : the true affinity score matrix

A*: the true optimal allocation

L: \mathcal{L}_1 -diameter of \mathcal{S}

 $\delta \colon \mathbb{P}(S^* \in \mathcal{S}) \ge 1 - \delta$

Integrality Gap

$$\mathbb{E}_{A'} \|A' - \tilde{A}\|_{1} = 2 \left(\|A'\|_{1} - \|\tilde{A}\|_{1} \right)$$
$$= |P||R| - 2 \left\| \frac{1}{2} - \tilde{A} \right\|_{1}$$

Define

 \tilde{A} : the continuous maximin solution

A': the rounding of \tilde{A}

 S^* : the true affinity score matrix

A*: the true optimal allocation

L: \mathcal{L}_1 -diameter of \mathcal{S}

 $\delta \colon \mathbb{P}(S^* \in \mathcal{S}) \ge 1 - \delta$

Integrality Gap

$$\mathbb{E}_{A'} \|A' - \tilde{A}\|_{1} = 2 \left(\|A'\|_{1} - \|\tilde{A}\|_{1} \right)$$
$$= |P||R| - 2 \left\| \frac{1}{2} - \tilde{A} \right\|_{1}$$

True Welfare Gap

$$\mathbb{P}\left(USW(A^*,S^*) - \mathbb{E}_{A'}USW(A',S^*) > \frac{L}{|P|}\right) < \delta$$

Integrality Gan

We may have to round heavily...

But the maximin objective still ensures high true welfare!

26

ICLR Experiments

100 * Adversarial USW

100 * Average USW

Year	# Revs	# Papers	ILP	RRA	ILP	RRA
2018	1657	546	17	16	179	160
2019	2620	851	22	27	184	161
2020	4123	1327	17	23	187	166
2021	4662	1557	23	33	192	174
2022	5023	1576	28	38	191	172
Average			21.4	27.4 (+28%)	187	167 (-11%)

USW numbers are divided by # Papers

ICLR Experiments

100 * Adversarial USW

100 * Average USW

Year	# Revs	# Papers	ILP	RRA	ILP	RRA
2018	1657	546	17	16	179	160
2019	2620	851	22	27	184	161
2020	4123	1327	17	23	187	166
2021	4662	1557	23	33	192	174
2022	5023	1576	28	38	191	172
Average			21.4	27.4 (+28%)	187	167 (-11%)

USW numbers are divided by # Papers

True Welfare under Noise

https://t.ly/g_sLd

Thanks!

Email: jpayan@cs.umass.edu

Robust Reviewer Assignment (RRA)

What about general convex uncertainty sets S?

Relax, then apply projected subgradient ascent against an "adversary"

Robust Reviewer Assignment (RRA)

What about general convex uncertainty sets S?

Relax, then apply projected subgradient ascent against an "adversary"

Gradient ascent for non-differentiable functions

What about general convex uncertainty sets S?

Relax, then apply projected subgradient ascent against an "adversary"

At each step, ensure constraints are satisfied

Gradient ascent for non-differentiable functions

What about general convex uncertainty sets S?

Relax, then apply projected subgradient ascent against an "adversary"

At each step, ensure constraints are satisfied

Gradient ascent for non-differentiable functions

It's a maximin problem

What about general convex uncertainty sets S?

Relax, then apply projected subgradient ascent against an "adversary"

Converges in poly-time if projection and adversary are efficient

Randomized rounding for discrete solution

Round $A \in \tilde{\mathcal{A}}$ to $A' \in \mathcal{A}$

Randomized rounding for discrete solution

Round $A \in \tilde{\mathcal{A}}$ to $A' \in \mathcal{A}$

Generalization of Birkhoff von Neumann decomposition

Maintains constraints of $\tilde{\mathcal{A}}$ and \mathcal{A}

$$\mathbb{E}[A'] = A$$

$$\min_{S \in \mathcal{S}} USW(A', S) \le \min_{S \in \mathcal{S}} USW(A, S)$$

ICLR Experiments

What about general convex uncertainty sets S?

Relax, then apply projected subgradient ascent against an "adversary"

Independent Bounding Boxes

Independent Bounding Boxes

Optimize assuming <u>S</u>

Independent Bounding Boxes

Optimize assuming <u>S</u>

Sphere

$$S = \mathcal{B}_{\epsilon}(S_0)$$

$$S_0$$

Independent Bounding Boxes

$$S = \mathcal{B}_{\epsilon}(S_0)$$

$$S_0$$

Optimize assuming <u>S</u>

Optimize assuming S_0

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

$$\text{Base Aggregated Score} = \begin{cases} \frac{1}{4}\text{TPMS} + \frac{1}{4}\text{ACL} + \frac{1}{2}\text{SAM} & \text{if all data is present} \\ \frac{1}{2}\text{ACL} + \frac{1}{2}\text{SAM} & \text{if TPMS is missing} \\ \frac{1}{2}\text{TPMS} + \frac{1}{2}\text{SAM} & \text{if ACL is missing} \\ \text{SAM} & \text{if both ACL and TPMS are missing} \end{cases}$$

Compute S as a τ % Cl of $\mathcal{N}(\mu, \Sigma)$

 μ is the base scores

 Σ is diagonal, based on number of missing sources

Learning Bids

Keyword

matching

Assign for Predicted Quality

Predict important review aspects

Agreement with final decision (d)

Probability of covering aspects $(p(a_i))$ Soundness

Clarity

Reproducibility

Value of assigning reviewer set C to paper p is

$$\lambda_1 \sum_{r \in C} d_{rp} + \lambda_2 \sum_{i} \max_{r \in C} p(a_i|r, p)$$

Constrained allocation of indivisible resources with submodular valuations

Online Reviewer Assignment

m reviewers available, must review n_t papers in month t

Goal:
$$\max_{A^{(1)},A^{(2)},...A^{(T)}} \sum_{t} USW(A^{(t)},S^{(t)})$$
 subj. to

Goal:
$$\max_{A^{(1)},A^{(2)},\dots A^{(T)}} \sum_{t} USW(A^{(t)},S^{(t)}) \quad \text{subj. to} \quad \frac{\sum_{t} \sum_{p} A^{(t)}_{pr} \leq U_{r}}{\sum_{p} A^{(t)}_{pr} \leq U_{r}} \quad \text{for all } r$$

Improving RRA

Precise trade-offs in randomized rounding with constraints

Randomized rounding for discrete solution

Round $A \in \tilde{\mathcal{A}}$ to $A' \in \mathcal{A}$

Generalization of Birkhoff von Neumann decomposition

Maintains constraints of $\tilde{\mathcal{A}}$ and \mathcal{A}

$$\mathbb{E}[A'] = A$$

Can replace this with guarantees on USW?

Uncertainty: Nowhere to be Found

Cannot trust high affinity scores

Low scores are too pessimistic (esp. with missing data)

Outline

Step through a typical conference workflow

Introduce RRA, a framework that accounts for uncertainty

Also allows us to use new affinity score estimation methods

Compute an uncertainty set S containing true, unknown affinity scores S

Compute an uncertainty set S containing true, unknown affinity scores S

What is RAU, really?

What is RAU, really?

Maximin USW is a lower bound for true USW

Flexibly trades off between certainty and high expected value

Approaches original problem as $S \rightarrow S$

 $\max_{A \in \mathcal{A}} \min_{S \in \mathcal{S}} USW(A, S)$

Outline

Step through a typical conference workflow

Introduce RRA, a framework that accounts for uncertainty

Also allows us to use new affinity score estimation methods

Conference Workflow 1.0

Collect constraints

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Conference Workflow 1.0

Collect Constraints

Compute affinity scores

Compute function of affinity scores

Maximize function of affinity scores

Kobren et al. Paper matching with local fairness constraints. 2019.

Stelmakh et al. PeerReview4All: Fair and accurate reviewer assignment in peer review. 2019.

Leyton-Brown et al. Matching papers and reviewers at large conferences. 2022.

Charlin and Zemel. The Toronto paper matching system: an automated paper-reviewer assignment system. 2013

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Affinity scores

Reviewer bid

Document similarity

Keyword matching

65

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Affinity scores

Reviewer

bid

Bids often missing!

Document similarity

Keyword matching

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Affinity scores

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Affinity scores

Reviewer

bid

Document

similarity

Keyword matching

Bids often missing!

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Affinity scores

Keyword matching

Bids often missing!

Reviewer

Error from ML models

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Affinity scores

Reviewer bid

Bids often missing!

Document similarity

Error from ML models

Keyword matching

Vocab mismatch

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Affinity scores

All just proxies!

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Affinity scores

Document similarity

Keyword matching

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Reviewer bid Document similarity

Keyword matching

$$=\lambda_1$$

$$\lambda_1$$
 1

$$\lambda_2$$
 7

$$\lambda_3$$
 4

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

4

Reviewer bid

$$= \lambda_1 \boxed{1}$$

Document similarity

$$\lambda_2$$
 7

Keyword matching

$$\lambda_3$$
 4

Any unavailable data is set to 0

Underestimation means high affinity scores are high with certainty

Collect data

Compute affinity scores Maximize function of affinity scores

Adjust assignment

Given affinity scores

6

9

Papers P and reviewers R Valid assignments $\mathcal{A} \subseteq \{0,1\}^{|P|\times|R|}$ Affinity score matrix $S \in \mathbb{R}_+^{|P| \times |R|}$

Maximize Utilitarian Social Welfare

$$\max_{A \in \mathcal{A}} \left[\sum_{p \in P, r \in R} A_{pr} S_{pr} = USW(A, S) \right]$$

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Given affinity scores

4

Papers P and reviewers RValid assignments $\mathcal{A} \subseteq \{0,1\}^{|P| \times |R|}$ Affinity score matrix $S \in \mathbb{R}_+^{|P| \times |R|}$

Maximize Utilitarian Social Welfare

$$\max_{A \in \mathcal{A}} \left[\sum_{p \in P, r \in R} A_{pr} S_{pr} = USW(A, S) \right]$$

ILP with totally unimodular constraints (poly-time solvable)

Compute an *uncertainty set* S containing true, unknown affinity scores S

Maximize the worst-case welfare over the uncertainty set

Compute an *uncertainty set* S containing true, unknown affinity scores S

Maximize the worst-case welfare over the uncertainty set

ICLR Experiments

Got all submitted papers to last 5 years of ICLR

Used authors _ as "reviewers"

Keywords =_ paper topics and author expertise

International Conference on Learning Representations

ICLR 2021

Oral Presentations

Spotlight Presentations

Poster Presentations

Withdrawn/Rejected Submissions

On the mapping between Hopfield networks and Restricted Boltzmann Mach

Matthew Smart, Anton Zilman

Keywords: Hopfield Networks, Restricted Boltzmann Machines, Statistical Physics

ICLR Experiments

Got all submitted papers to last 5 years of ICLR

Used authors _ as "reviewers"

Keywords =__ paper topics and author expertise

International Conference on Learning Representations

ICLR 2021

Oral Presentations

Spotlight Presentations

Poster Presentations

Withdrawn/Rejected Submissions

On the mapping between Hopfield networks and Restricted Boltzmann Mach

Matthew Smart, Anton Zilman

28 Sept 2020 (modified: 10 Feb 2022) ICLR 2021 Oral Readers: Everyone 9 Replies Hide details

Keywords: Hopfield Networks, Restricted Boltzmann Machines, Statistical Physics

Compute $\mathcal S$ as a contour of $\mathcal N(\mu,\Sigma)$

 μ based on keyword overlap

 $diag(\Sigma) \propto 1/(\# \text{ keywords})$

Relax discrete -> continuous

Subgradient-ascent optimization

Randomized rounding for discrete solution

Relax discrete -> continuous

$$\mathcal{A} \subseteq \{0,1\}^{m \times n} \to \tilde{\mathcal{A}} \subseteq [0,1]^{m \times n}$$

Subgradient-ascent optimization

Randomized rounding for discrete solution

Relax discrete -> continuous

$$\mathcal{A} \subseteq \{0,1\}^{m \times n} \rightarrow \tilde{\mathcal{A}} \subseteq [0,1]^{m \times n}$$

Subgradient-ascent optimization

Solve $\max_{A \in \tilde{A}} f(A)$ by steps in $\partial_A f(A)$

Randomized rounding for discrete solution

Subgradient-ascent optimization

Solve $\max_{A \in \tilde{A}} f(A)$ by steps in $\partial_A f(A)$

Subgradient-ascent optimization

Solve $\max_{A \in \tilde{\mathcal{A}}} f(A)$ by steps in $\partial_A f(A)$

Subgradient-ascent optimization

Compute f(A) as the adversary

Step in direction of $\partial_A f(A)$

Project to feasible set $\tilde{\mathcal{A}}$

Solve $\max_{A \in \tilde{A}} f(A)$ by steps in $\partial_A f(A)$

Subgradient-ascent optimization

Compute f(A) as the adversary

Step in direction of $\partial_A f(A)$

Project to feasible set $\tilde{\mathcal{A}}$

Solve $\max_{A \in \tilde{\mathcal{A}}} f(A)$ by steps in $\partial_A f(A)$

$$f(A) = \min_{S \in \mathcal{S}} USW(A, S)$$

Subgradient-ascent optimization

Compute f(A) as the adversary

Step in direction of $\partial_A f(A)$

Project to feasible set $\tilde{\mathcal{A}}$

Solve
$$\max_{A \in \tilde{\mathcal{A}}} f(A)$$
 by steps in $\partial_A f(A)$

$$f(A) = \min_{S \in \mathcal{S}} USW(A, S)$$

$$\nabla_A USW(A, \operatorname{argmin} USW(A, S)) \in \partial_A f(A)$$

 $S \in S$

$$A' \leftarrow A + \nabla_A USW(A, \operatorname{argmin} USW(A, S))$$

 $S \in S$

Subgradient-ascent optimization

Compute f(A) as the adversary

Step in direction of $\partial_A f(A)$

Project to feasible set $\tilde{\mathcal{A}}$

Solve
$$\max_{A \in \tilde{\mathcal{A}}} f(A)$$
 by steps in $\partial_A f(A)$

$$f(A) = \min_{S \in \mathcal{S}} USW(A, S)$$

$$\nabla_A USW(A, \operatorname{argmin} USW(A, S)) \in \partial_A f(A)$$

 $S \in S$

$$A' \leftarrow A + \nabla_A USW(A, \underset{S \in \mathcal{S}}{\operatorname{argmin}} USW(A, S))$$

$$A'' \leftarrow \underset{A \in \tilde{\mathcal{A}}}{\operatorname{argmin}} \|A - A'\|_2$$

Relax discrete -> continuous

$$\mathcal{A} \subseteq \{0,1\}^{m \times n} \rightarrow \tilde{\mathcal{A}} \subseteq [0,1]^{m \times n}$$

Subgradient-ascent optimization

Solve $\max_{A \in \tilde{A}} f(A)$ by steps in $\partial_A f(A)$

Randomized rounding for discrete solution

Round $A \in \tilde{\mathcal{A}}$ to $A' \in \mathcal{A}$

Theorem 2:

$$\max_{A \in \mathcal{A}} \min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S) = \max_{A \in \mathcal{A}} USW(A, S_0)$$

Proof sketch:
$$\min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S) = \min_{X \in \mathcal{B}_{\epsilon}(0)} USW(A, S_0 + X)$$

Theorem 2:

$$\max_{A \in \mathcal{A}} \min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S) = \max_{A \in \mathcal{A}} USW(A, S_0)$$

Proof sketch:
$$\min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A,S) = \min_{X \in \mathcal{B}_{\epsilon}(0)} USW(A,S_0 + X)$$
$$= USW(A,S_0) + \min_{X \in \mathcal{B}_{\epsilon}(0)} USW(A,X)$$

Theorem 2: $\max_{A \in \mathcal{A}} \min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S) = \max_{A \in \mathcal{A}} USW(A, S_0)$

Proof sketch:

$$\min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S) = \min_{X \in \mathcal{B}_{\epsilon}(0)} USW(A, S_0 + X)$$

 $= USW(A, S_0) + \min_{X \in \mathcal{B}_{\epsilon}(0)} USW(A, X)$

$$X = -A \frac{\epsilon}{\|A\|_2}$$

Theorem 2: $\max_{A \in \mathcal{A}} \min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S) = \max_{A \in \mathcal{A}} USW(A, S_0)$

$$\min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S) = \min_{X \in \mathcal{B}_{\epsilon}(0)} USW(A, S_0 + X)$$

$$X = -A \frac{\epsilon}{\|A\|_2}$$

$$= USW(A, S_0) + \min_{X \in \mathcal{B}_{\epsilon}(0)} USW(A, X)$$
$$= USW(A, S_0) + USW\left(A, -A\frac{\epsilon}{\|A\|_2}\right)$$

Theorem 2: $\max_{A \in \mathcal{A}} \min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S) = \max_{A \in \mathcal{A}} USW(A, S_0)$

$$\min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S) = \min_{X \in \mathcal{B}_{\epsilon}(0)} USW(A, S_0 + X)$$

$$X = -A \frac{\epsilon}{\|A\|_2}$$

$$= USW(A, S_0) + \min_{X \in \mathcal{B}_{\epsilon}(0)} USW(A, X)$$

$$= USW(A, S_0) + USW\left(A, -A\frac{\epsilon}{\|A\|_2}\right)$$

$$= USW(A, S_0) - \|A\|_2^2 \frac{\epsilon}{\|A\|_2}$$

Theorem 2: $\max_{A \in \mathcal{A}} \min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S) = \max_{A \in \mathcal{A}} USW(A, S_0)$

$$\min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S) = \min_{X \in \mathcal{B}_{\epsilon}(0)} USW(A, S_0 + X)$$

$$X = -A \frac{\epsilon}{\|A\|_2}$$

$$= USW(A, S_0) + \min_{X \in \mathcal{B}_{\epsilon}(0)} USW(A, X)$$

$$= USW(A, S_0) + USW\left(A, -A\frac{\epsilon}{\|A\|_2}\right)$$

$$= USW(A, S_0) - ||A||_2^2 \frac{\epsilon}{||A||_2}$$

$$= USW(A, S_0) - ||A||_2 \epsilon$$

Theorem 2:

$$\max_{A \in \mathcal{A}} \min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S) = \max_{A \in \mathcal{A}} USW(A, S_0)$$

Proof sketch:
$$\min_{S \in \mathcal{B}_{\epsilon}(S_0)} USW(A,S) = \min_{X \in \mathcal{B}_{\epsilon}(0)} USW(A,S_0 + X)$$
Minimized when X points
$$\text{as far in the direction}$$
opposite A as possible:
$$X = -A \frac{\epsilon}{\|A\|_2}$$

$$= USW(A,S_0) + USW(A,A_0) + USW(A,A_0)$$

$$= USW(A,S_0) - \|A\|_2^2 \frac{\epsilon}{\|A\|_2}$$
Constant, due to
$$\text{constraints}$$

$$= USW(A,S_0) - \|A\|_2^2 \frac{\epsilon}{\|A\|_2}$$

Future Work

- Be sure to publicize FairSeq, our recently submitted paper, and the workshop.
- Further experiments
 - Take datasets of affinity scores, drop some and fill in remaining values
 - Build a predictive model of affinity scores from old conferences
 - Collect data from conference organizers
 - Discuss the collaborative filtering bid model?
- Combining fairness and robustness
 - Add an envy penalty to the objective function
 - Maximize expected egalitarian welfare
- Rounding tradeoffs?

Fair Division at IJCAI

- Anyone want to co-organize?
- Plan to submit papers!
- Mention proposed schedule, etc.

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Affinity scores

$$=\lambda_1$$
 1

$$\lambda_2$$
 7

$$\lambda_3$$
 4

$$\text{Base Aggregated Score} = \begin{cases} \frac{1}{4}\text{TPMS} + \frac{1}{4}\text{ACL} + \frac{1}{2}\text{SAM} & \text{if all data is present} \\ \frac{1}{2}\text{ACL} + \frac{1}{2}\text{SAM} & \text{if TPMS is missing} \\ \frac{1}{2}\text{TPMS} + \frac{1}{2}\text{SAM} & \text{if ACL is missing} \\ \text{SAM} & \text{if both ACL and TPMS are missing} \end{cases}$$

$$aggscore = (Base aggregated score)^{bidscore}$$

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Affinity scores

aggscore = (Base aggregated score)^{bidscore}

Allocation Deciderata

High affinity (welfare/USW)

Fast to compute

Fair to papers

Adapt to constraints

Allocation Deciderata

Robustness to noisy affinities 6

Fairness to Papers

Envy-freeness up to 1 Item (EF1)

Ensures pairwise balance in affinity scores

Large literature with simple/fast algorithms

Envy-freeness up to 1 Item (EF1)

For all pairs of papers A and B, if B receives a set of reviewers that is better suited for A, then it is due to at most one reviewer

Envy-freeness up to 1 Item (EF1)

For all pairs of papers A and B, if B receives a set of reviewers that is better suited for A, then it is due to at most one reviewer

Envy-freeness up to 1 Item (EF1)

For all pairs of papers A and B, if B receives a set of reviewers that is better suited for A, then it is due to at most one reviewer

Envy-freeness up to 1 Item (EF1)

For all pairs of papers A and B, if B receives a set of reviewers that is better suited for A, then it is due to at most one reviewer

Does not make sense when papers have variable demands

Weighted EF1 (WEF1)

For all pairs of papers A and B, if B receives a set of reviewers that is better suited for A **after adjusting for paper demands**, then it is due to at most one reviewer

Weighted EF1 (WEF1)

For all pairs of papers A and B, if B receives a set of reviewers that is better suited for A **after adjusting for paper demands**, then it is due to at most one reviewer

Weighted EF1 (WEF1)

For all pairs of papers A and B, if B receives a set of reviewers that is better suited for A **after adjusting for paper demands**, then it is due to at most one reviewer

Picking Sequences for EF1 and Welfare

Put papers in some order, and assign reviewers in that order

Choose the order for EF1 & (approximate) max welfare

Picking Sequences for EF1 and Welfare

I Will Have Order! Optimizing Orders for Fair Reviewer Assignment.

Payan and Zick, IJCAI 2022.

Fixed order, repeated over rounds (round-robin order) is EF1

Does not work for variable paper demands

Finding a high-welfare round-robin order is slow

Picking sequence that assigns in order of fraction of demand satisfied

Ties broken to greedily maximize affinity

Very fast

Satisfies WEF1

High welfare in practice

FairSequence - Very Fast!

Welfare and Fairness

Our Approaches

GRRR

94%

0

MIDL	USW (% of OPT)
	# EF1 Viol.

TPMS (OPT)	FairFlow	PR4A	GRRR	FairSeq
100%	100%	98%	98%	99%
0	0	0	0	0

CVPR USW (% of OPT) # EF1 Viol.

TPMS (OPT)	FairFlow	PR4A	GRRR	FairSeq
100%	96%	94%	88%	92%
473545	23344	82	0	0

CVPR '18 USW (% of OPT) # EF1 Viol.

TPMS (OPT)	FairFlow	PR4A
100%	97%	97%
134	25	2

FairSeq

96%

0

FairSequence Fits the Criteria

Fairness

Ours are the only approaches that satisfy EF1

Welfare

High USW w.r.t. TPMS (OPT) and algorithms used in practice

Speed

~10x speedup compared to fair competitors

Flexibility

Simplicity → flexibility

Look for FairSequence!

Given affinity scores

1 8

Reviewer bids

Document-based scores

Keyword matching

Robust Reviewer Assignment

Feasible region $\mathcal S$ for affinity scores Solution space $\mathcal A$ of valid assignments

$$\max_{A \in \mathcal{A}} \min_{S_A \in \mathcal{S}} USW(A, S_A)$$

Goals:

- 1. Find plausible models for \mathcal{S} with simple solutions 2. Build general purpose robust optimization algorithm
 - 3. Enable alternative welfare functions

S as Box Constraints

S as Box Constraints

S as Box Constraints

$$\max_{A \in \mathcal{A}} \min_{S_A \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S_A) = \max_{A \in \mathcal{A}} USW(A, S_0)$$

The welfare maximizer is robust to spherical noise.

Theorem:

$$\max_{A \in \mathcal{A}} \min_{S_A \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S_A) = \max_{A \in \mathcal{A}} USW(A, S_0)$$

$$\min_{S_A \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S_A) = \min_{x \in \mathcal{B}_{\epsilon}(0)} USW(A, S_0 + x)$$
$$= USW(A, S_0) + \min_{x \in \mathcal{B}_{\epsilon}(0)} USW(A, x)$$

Theorem:

$$\max_{A \in \mathcal{A}} \min_{S_A \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S_A) = \max_{A \in \mathcal{A}} USW(A, S_0)$$

$$\min_{S_A \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S_A) = \min_{x \in \mathcal{B}_{\epsilon}(0)} USW(A, S_0 + x)$$
$$= USW(A, S_0) + \min_{x \in \mathcal{B}_{\epsilon}(0)} USW(A, x)$$

Minimized when x points as far in the direction opposite A as possible:

$$\dot{x} = -A \frac{\epsilon}{||A||_2}$$

Theorem:

$$\max_{A \in \mathcal{A}} \min_{S_A \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S_A) = \max_{A \in \mathcal{A}} USW(A, S_0)$$

$$\min_{S_A \in \mathcal{B}_{\epsilon}(S_0)} USW(A, S_A) = \min_{x \in \mathcal{B}_{\epsilon}(0)} USW(A, S_0 + x) \qquad \text{Minimized when } x$$
 points as far in the direction opposite
$$= USW(A, S_0) + \min_{x \in \mathcal{B}_{\epsilon}(0)} USW(A, x) \qquad \text{direction opposite}$$

$$= USW(A, S_0) + USW\left(A, -A\frac{\epsilon}{||A||_2}\right) \qquad x = -A\frac{\epsilon}{||A||_2}$$

$$= USW(A, S_0) - \left||A|\right|_2^2 \frac{\epsilon}{||A||_2}$$

$$= USW(A, S_0) - \left||A|\right|_2^2 \epsilon \qquad \text{Constant, due to constraints}$$

AAAI's Affinity Scores

$$\text{Base Aggregated Score} = \begin{cases} \frac{1}{4}\text{TPMS} + \frac{1}{4}\text{ACL} + \frac{1}{2}\text{SAM} & \text{if all data is present} \\ \frac{1}{2}\text{ACL} + \frac{1}{2}\text{SAM} & \text{if TPMS is missing} \\ \frac{1}{2}\text{TPMS} + \frac{1}{2}\text{SAM} & \text{if ACL is missing} \\ \text{SAM} & \text{if both ACL and TPMS are missing} \end{cases}$$

Noise varies by score availability

Also modeled by elliptical noise

AAAI's Affinity Scores

$$\text{Base Aggregated Score} = \begin{cases} \frac{1}{4}\text{TPMS} + \frac{1}{4}\text{ACL} + \frac{1}{2}\text{SAM} & \text{if all data is present} \\ \frac{1}{2}\text{ACL} + \frac{1}{2}\text{SAM} & \text{if TPMS is missing} \\ \frac{1}{2}\text{TPMS} + \frac{1}{2}\text{SAM} & \text{if ACL is missing} \\ \text{SAM} & \text{if both ACL and TPMS are missing} \end{cases}$$

Noise varies by score availability

Also modeled by elliptical noise

(Groupwise) Egalitarian Welfare

$$ESW(A,S) = \min_{i \in N} \sum_{j \in R} A_{ij} S_{ij}$$

If we have groups $G = \{G_1, G_2 \dots G_g\}$ (e.g. subject areas/tracks), we define groupwise ESW:

$$ESW(A, S, G) = \min_{G_k \in G} \sum_{i \in G_k} \sum_{j \in R} A_{ij} S_{ij}$$

(Groupwise) Egalitarian Welfare

Fair to papers

$$ESW(A,S) = \min_{i \in N} \sum_{j \in R} A_{ij} S_{ij}$$

If we have groups $G = \{G_1, G_2 \dots G_g\}$ (e.g. subject areas/tracks), we define groupwise ESW:

Fair to subject areas

$$ESW(A, S, G) = \min_{G_k \in G} \sum_{i \in G_k} \sum_{j \in R} A_{ij} S_{ij}$$

Future Work

- Quantify integrality gaps
 - What is the impact of rounding?
- Closed-form solution for elliptical noise?
- More realistic experimental setup
 - Build document-similarity and bidding models with noise estimates
- Robust fairness
 - Envy term in the objective
 - Group-wise egalitarian welfare
- Other applications of robust allocation
 - Course allocation with inferred preferences, etc

Measuring Robustness

Identify allocation A_{S_0} produced by solving for optimal under S_0 Concentrate noise around pairs assigned by A_{S_0} with parameter $1-\alpha$ Compare worst-case and random-case welfare of A_{S_0} with robust solution A_R

Collect constraints

Collect data

Compute affinity scores

Maximize function of affinity scores

Adjust assignment

Predictive model based on historical performance

Measuring Robustness

Robust achieves higher worst-case USW and higher USW on randomly sampled true scores

 α controls concentration of noise on pairs assigned by point estimate method

Computing the Subgradient

Initialize
$$A_1 = \max_{A \in \mathcal{A}} USW(A, S_0)$$

For $t \in \{1, 2, ... T\}$:
 $S_t = \operatorname{argmin} USW(A_t, S)$
 $S \in \mathcal{S}$
 $A_{t+1} = A_t + \frac{1}{t+1}S_t$
 $A_{t+1} = P_{\mathcal{A}}(A_{t+1})$
Return rounded A_T

Projection onto feasible set of allocations \mathcal{A}

Round to an integer, constraint-satisfying allocation¹