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Abstract

We study fair allocation of constrained resources, where a market designer opti-
mizes overall welfare while maintaining group fairness. In many large-scale set-
tings, utilities are not known in advance, but are instead observed after realizing
the allocation. We therefore estimate agent utilities using machine learning. Op-
timizing over estimates requires trading-off between mean utilities and their pre-
dictive variances. We discuss these trade-offs under two paradigms for preference
modeling – in the stochastic optimization regime, the market designer has access
to a probability distribution over utilities, and in the robust optimization regime
they have access to an uncertainty set containing the true utilities with high prob-
ability. We discuss utilitarian and egalitarian based objectives, and we explore
how to optimize for them under stochastic and robust paradigms. We demonstrate
the efficacy of our approaches on three publicly available conference reviewer as-
signment datasets. The approaches presented enable scalable constrained resource
allocation under uncertainty for many different objectives and preference models.

1 Introduction

Constrained resource allocation without money underpins many important systems; the list of appli-
cations includes reviewer assignment for peer review (our primary example throughout the paper)
[4, 14, 30, 45, 54], assigning resources to homeless populations [5, 33, 49], distributing emergency
response resources [51, 56, 57], and more [1, 43, 53]. In these settings we assign resources to agents.
Agents and resources are constrained; each agent has bounds on the minimum or maximum number
of items they receive from different categories, and each item has required minimums and limited
total capacity. In the case of reviewer assignment, for example, papers must receive a certain num-
ber of reviews from unique reviewers, reviewers have upper limits on the number of papers they can
review, and conflicts of interest prevent specific reviewers from being assigned to a paper.

A crucial factor in all of the above settings is the presence of uncertainty. Uncertainty often stems
from the fact that agents’ utilities for resources depend on future outcomes. In reviewer assignment,
a reviewer’s true quality is observed only after he or she has written a review. Uncertainty may
also stem from our limited ability to elicit preferences; for example, in deciding where to target
lead pipe mitigation projects based on number of school-aged children per neighborhood, we may
have access to imperfect school enrollment records, allowing only an approximate model of the im-
pacts of mitigation on children in each neighborhood [53]. We adopt two possible stances towards
uncertainty, depending on the information available. When we have access to a probability distri-
bution over preferences, we optimize the conditional expectation of the distribution at percentiles
of interest [32, 50]. When we have access to a set of possible preferences, we adopt the robust ap-
proach; which is related to the minimax regret objective used in solving robust assignment problems
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[3, 9, 10, 31]. Uncertainty-aware optimization approaches can often result in significantly different
allocations from the default of optimizing for welfare over a central estimate (see Example 2.1 for
an intuitive example).

Typically, we maximize the sum of agent utilities. However, in many of these settings, we are also
concerned with fairness to individuals or groups of agents. Groups of agents may represent subject
areas of papers in reviewer assignment, demographic groups in poverty alleviation campaigns, or
regional groupings of computational resources in bandwidth allocation. Fairness to these groups
may be legally required in some cases; in others it is an ethical choice by the decision maker.
Although groups are often first-class objects worthy of receiving fair treatment, group fairness is
often the smallest granularity of fairness achievable under uncertainty – in a large dataset uncertainty
will always cause some individuals to have vanishing welfare, but group welfare can still be upheld.
Although there is much literature on combinatorial optimization under uncertainty [3, 9, 10, 31, 32],
to our knowledge it has not addressed the intersection of fairness and uncertainty in the constrained
multi-matching problem.

1.1 Our Contributions

We study the broad problem of fair and efficient constrained multi-matchings under preference un-
certainty. We present and optimize for welfare while simultaneously accounting for the uncertainty
inherent in real-world resource allocation problems. Specifically, we develop methods to efficiently
optimize the utilitarian and egalitarian objective using the robust approach [6, 7, 25] and CVaR
approach [50]. Our results are summarized in Table 1.

For robust optimization, we construct an uncertainty set containing the true preferences with high
probability (Section 3). This model is appropriate when building a predictor with statistical error
bounds, but without making any assumptions on the full probability distribution over preferences.
For utilitarian and egalitarian welfare functions, we robustly maximize welfare over such uncertainty
sets. When the uncertainty sets are linear we can efficiently compute the exact optimal allocations
for both utilitarian and egalitarian welfare in polynomial time (Propositions 3.2 and 3.5). Under
ellipsoidal uncertainty sets, we can apply an iterated quadratic programming approach for utili-
tarian welfare (Proposition 3.3), while a sub-gradient ascent approach is needed for the egalitarian
objective (Proposition 3.4).

When the market designer can construct a full probability distribution over preferences, we consider
stochastic optimization using the robustness concept of Conditional Value at Risk, or CVaR [50].
This approach selects an allocation that maximizes the conditional expectation of welfare over the
left tail of the distribution. We largely approach CVaR objectives using sampling, then solving the
resulting linear program (LP). Section 4 deals with CVaR of welfare.

In addition to discussing the theoretical underpinnings of these optimization problems, we compare
them empirically in Section 5 on reviewer assignment data from AAMAS 2015, 2016, and 2021.

1.2 Related work

We discuss the history of prior work on robust and CVaR optimization in Appendix A.

Some existing work applies stochastic or robust optimization to fair division problems. A line of
work studies the minimax regret objective in combinatorial optimization problems, such as con-
strained resource allocation [3, 9, 10, 31]. This work does not explicitly consider multi-matching
problems like those considered here, nor does it address the robust egalitarian welfare problem.
Pujol et al. [48] study fair division problems with parameters noised for differential privacy, show-
ing that the noise can cause unfair allocations; they propose a Monte Carlo approach to mitigate
the unfairness with high probability. Peters et al. [46] study envy-free rent division under proba-
bilistic uncertainty. Here, a central mechanism divides rooms and sets room prices for the items to
minimize envy. We study a setting without money, both utilitarian and egalitarian objectives, and
robust optimization in addition to stochastic optimization. Cousins et al. [14] introduce the frame-
work of Robust Reviewer Assignment to solve reviewer assignment problems, but only study robust
optimization under the utilitarian objective. However, they propose a naive projected sub-gradient
ascent method which requires solving a quadratic program over a large number of iterations, mak-
ing it inefficient. Our empirical analysis in Section 5 demonstrates the inefficiency of this method.
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Fair machine learning algorithms [15, 21, 22, 42, 59] often employ similar adversarial optimization
techniques over an uncertainty set in a machine learning context. Other fair allocation research has
studied the case where agent demand or item availability are uncertain but preferences are known
[2, 12, 20, 26] In our case demand and availability are known but preferences are not. Devic et al.
[18] consider fair two-sided matching where the fairness constraint is defined with respect to un-
known parameters; we assume knowledge of the parameters that define the fairness constraint (i.e.,
group identities).

2 Fair Resource Allocation under Uncertainty

Table 1: Summary of optimization algorithms for efficiently computing utilitarian and egalitarian
welfare under different robustness concepts.

Robustness Concept

Robust-Linear Robust-Ellipsoid CVaR CVaR-Normal
Utilitarian Reduction to LP

(3.2)
IQP (3.3) Sampling + LP

(4.1)
Projected Gradient
Ascent (4.4)

Egalitarian Reduction to LP
(3.5)

Sub-Gradient As-
cent (3.4)

Sampling + LP
(H.3)

SOCP (C.1)

2.1 Fair Resource Allocation

We have a set of n agents N = {a1, . . . an}, and m item types I = {i1, . . . im}. Agents are
partitioned into g groups G = {G1, . . . Gg}, with each G ⊆ N and each agent i belonging to a
unique group.

Here onwards, for any given n×mmatrix X we use the same lower-case bold letter, i.e., x to denote
the vector representing the vectorized form of the matrix X , in row-major order. Furthermore, for
any group of agents G, we use xG ∈ R|G|m to denote the vector restricted to the agents in G. Given
vectors x,y ⊆ Rnm and real number c ∈ R, let x ⪰ c denote that xj ≥ c for all j, and let x ⪰ y
denote that x− y ⪰ 0. The ⪯ operator is defined analogously.

We assume a valuation matrix V ∗ ∈ [0, 1]n×m, where V ∗
a,i encodes the true value of assigning item

type i to agent a. The values of V ∗ are typically unknown; we discuss our approaches to handle this
problem in Section 2.2.

Given some set of feasible assignments A ⊆ Nn×m, we aim to find assignments A ∈ A where
Aa,i indicates the number of items of type i allocated to agent a. For each agent a ∈ N , we have
upper and lower bounds on assignments of the form κa ≤

∑
i∈I Aa,i ≤ κ̄a. For each item i, we

have lower and upper bounds on the total assignment of that item; ψ
i
≤
∑

a∈N Aa,i ≤ ψ̄i. Finally,
we have pairwise limits Ca,i for each agent a and item type i, requiring that Aa,i ≤ ca,i. It is
always the case that the constraints define a finite set such that |A| ∈ N. In the example of reviewer
assignment, these constraints reflect the review requirements per paper, load bounds for reviewers,
conflicts of interest, and the constraint that no reviewer is assigned twice to any given paper.

Let u : A× V × G → R be an affine function mapping from allocations to utilities for each group.
u(a,v, G) denotes the utility of the group G under allocation a ∈ A (recall that a is simply the
vectorized version of the assignment A). We assume that u is additive, such that the utility of group
G under assignment a ∈ A and valuations v is equal to a⊺

GvG

|G| . For any group G, we will use the
shorthand uG to represent u(a,v, G). We then define a welfare function W : Rg → R, where
W (uG1

,uG2
, · · · ,uGg

) denotes the total welfare of allocation a. The weighted utilitarian social
welfare function is defined as Ww

USW(u)
.
=
∑g

G=1 wGuG, where w ∈ Rg
0+ denotes the weights on

groups in G. When wG = |G| for all G, we call this function simply “utilitarian welfare” or “USW”
and denote it as WUSW. The group egalitarian social welfare function (also “group egalitarian
welfare” or “GESW”) is defined as WGESW(u)

.
= mingG=1 uG. We do not consider individual

egalitarian welfare in this work; under robust and stochastic optimization the egalitarian welfare is
zero when the number of items is proportional to the number of agents and uncertainty is non-trivial.
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2.2 Optimizing Allocations under Uncertainty

We consider two main approaches to dealing with uncertainty: the robust optimization approach and
the Conditional Value at Risk approach.
In the robust approach, we obtain an uncertainty set V that contains the true agent valuations v∗

with probability ≥ 1 − δ for some confidence parameter δ ∈ [0, 1). We then optimize the welfare
corresponding to the worst valuation matrix in the uncertainty set, i.e., maxa∈A minv∈V W (u(a)).
This approach is appropriate when we do not have access to a full distribution Dv but have error
bounds on v∗ [14]. We investigate this regime in Section 3.
When we have access to a full distribution Dv over a random variable v ∈ [0, 1]nm, we apply a
stochastic approach instead. We compute the welfare distribution and optimize the conditional ex-
pectation over an α-percentile of the welfare or Conditional Value at Risk at α (CVaRα), where
the confidence parameter α is determined by the market-maker. This approach is also referred to
as the soft-robust approach. Suppose that Dv represents the probability distribution of the ran-
dom valuation matrix V and α denotes the percentile of the welfare we wish to optimize. For
any α ∈ (0, 0.5), CVaRα is defined as Ev∼Dv [X | X ≤ να(W ;a,v)] where να(W ;a,v) de-
notes the α-percentile of welfare. This approach is only appropriate when Dv is fully known, and
EV∼Dv [X | X ≤ να(W ;a,v)] can be efficiently computed and optimized. We investigate this
regime in Section 4.

Example 2.1 (The Importance of Considering Uncertainty). Consider a simple two-agent, two-item
instance, where each agent needs to get exactly one item, and either likes (utility 1) or dislikes it
(utility 0). Agent preferences are Bernoulli random variables, where Pr[v1,1 = 1] = 0.8,Pr[v1,2 =
1] = 0.9,Pr[v2,1 = 1] = 0.5, and Pr[v2,2 = 1] = 0.8. If we maximize the sum of values over
the expected value of each variable, we would assign i1 to a1 and i2 to a2, for a total expected
value of 1.6. However, consider instead the objective of Conditional Value at Risk, which is the
conditional expectation over the left tail of the distribution at a certain percentile. When we make
the expectation-maximizing assignment, then Pr[W = 0] = 0.04 and Pr[W = 1] = 0.32. However,
if we assign i2 to agent a1 and item i1 to agent a2, we have that Pr[W = 0] = 0.05 and Pr[W =
1] = 0.5. This means that the conditional expectation of welfare at the 30th percentile is higher if
we assign i2 to a1 and i1 to a2 (it is .32 in the first case and .5 in the second case). If we want to
retain welfare in the face of uncertainty, we might well choose to maximize this quantity rather than
the expectation of the welfare.

3 Robust Welfare Optimization

We construct the optimization problems for Utilitarian and Egalitarian welfare objectives with the
Robust approach. Many of these optimization problems are concave-convex max-min problems that
can be directly solved using the naive projected gradient ascent technique [14]: in each iteration
of the algorithm, the inner minimization problem is solved to optimality, followed by a projected-
gradient step on the allocation a. However, this method does not exploit the structure of these prob-
lems and is often computationally expensive or intractable, as demonstrated empirically in Section 5.
Despite the inherent complexities of these problems, we show that under specific assumptions, these
problems can be reduced to more manageable forms that are easier to optimize. We then discuss a
range of algorithms for efficiently optimizing the simplified problems.

Scope: The Robust approach detailed in Section 2 assumes the availability of an uncertainty set of
the valuation matrix. For the sake of computational tractability, we focus on the class of uncertainty
sets defined by linear and ellipsoidal constraints:

V =
{
v ∈ Rnm | ∀i ∈ [1, l], (v − v̄i)Σ

−1
i (v − v̄i) ≤ r2i ,Qv ⪰ e,v ⪰ 0

}
,

where the ith ellipsoidal uncertainty set has center v̄i ∈ Rnm
0+ , covariance matrix Σi ∈ Rnm×nm,

with radius ri ∈ R, Q ∈ Rk×nm, and e ∈ Rk. We will further assume that the covariance matrices
corresponding to the ellipsoidal uncertainty sets are positive semi-definite. This limitation on the
structure of uncertainty sets is not too restrictive; it is possible to construct such uncertainty sets for
linear regression and logistic regression models using statistical bounds, as shown in appendix D.
Moreover, in all of our methods where obtaining an integer allocation is either not feasible or com-
putationally tractable, we relax the set of feasible integer assignments A ⊆ Nn×m to a set of feasible
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continuous allocations Ã ⊆ Rn×m
0+ . We obtain integer allocations by applying randomized rounding

techniques to the continuous allocations. This conversion procedure is laid out in [14].

3.1 Robust Allocation for Utilitarian Welfare

We consider the problem of finding an allocation that optimizes the utilitarian welfare under the
worst valuation matrix in the uncertainty set. We formulate the problem as:

max
a∈A

min
v∈V

∑
G∈G

wG · u(a,v, G) , (1)

where wG∀G ∈ G represent the scalar weight corresponding to group G. The objective and con-
straints of the inner-minimization problem described in (1) are convex, which confirms that the
inner-minimization problem is also convex. Furthermore, the problem is strictly feasible, which
satisfies Slater’s condition [11] for strong duality. Therefore, by taking the dual of the inner-
minimization problem, we can simplify the problem in (1) into a single equivalent maximization
problem. We provide the dual formation in Proposition 3.1.

In the dual, let β ∈ Rk
0+ be the dual variable corresponding to the linear constraints Qv ⪰ e,

λ ∈ Rl
0+ be the dual variable associated with the ellipsoidal constraints, and ξ ∈ Rnm be the

variable that combines the primal variable a with the dual variable of the non-negativity constraint
on v for variable elimination. Furthermore, we define a set of feasible ξ as Λ = A−Rnm

0+ , which is
Pareto-dominated by A.
Proposition 3.1. The problem in (1) is equivalent to solving

max
ξ∈Λ,λ∈Rl

0+,

β∈Rk
0+

c⊺Σ−1
[L]d

⊺ + β⊺e− 1

4
∥c⊺Σ−1/2

[L] ∥22 +
l∑

i=1

λi∥v̄⊺
iΣ

−1/2
i ∥22 − ∥d⊺Σ

−1/2

[L] ∥22 −
l∑

i=1

λir
2
i , (2)

where c = (−β⊺Q+ξ) and d =
∑l

i=1 λiv̄
⊺
i Σ

−1
i , and Σ[L] =

∑l
i=1 λiΣ

−1
i . Let ξ∗ be the optimal

ξ in (2). Then, the optimal allocation a∗ can be derived from ξ∗ by solving the system of equations:

G ∈ G :
wG

|G| · aG ⪯ ξ∗
G, a ∈ A ,

Proposition 3.1 shows that the optimal allocation for the problem in eq. (1) can be computed by first
solving the concave cubic program in eq. (2) to obtain ξ∗ and then deriving the optimal allocation a∗

from ξ∗ by solving a system of equations. Notably, the problem in eq. (2) is a single maximization
problem with fewer variables and constraints as compared to the max-min problem in (1), making
it simpler to solve. Additionally, when the valuation uncertainty set is polyhedral, the problem in
(2) simplifies further into a linear program (LP) which can be solved efficiently using standard LP
solvers like Gurobi [27]. We present this result in proposition 3.2. Moreover, when the valuation un-
certainty set has a single ellipsoidal constraint with a non-negativity constraint, we can compute the
exact optimal solution using iterated quadratic programming (IQP), as described in Proposition 3.3.

Proposition 3.2. In the case where the uncertainty set V is defined purely by linear constraints, i.e.,
V = {v ∈ Rnm

0+ | Qv ⪰ e}, the optimal allocation a∗ for the problem in (1) can be computed by
solving the linear program:

max
a∈A,β∈Rk

0+

β⊺e s.t. ∀G ∈ G : β⊺
GQG ⪯ wG

|G| aG . (3)

Proposition 3.3. Suppose that the set V in (1) is defined by a single truncated ellipsoidal constraint
i.e., V = {v ∈ Rnm

0+ | (v − v̄)Σ−1
i (v − v̄) ≤ r2}. The problem in (1) is equivalent to solving

max
λ∈R0+,ξ∈Λ

(
ξ⊺v̄ − ∥ξ⊺Σ

1
2 ∥2F

4λ
− λr2

)
. (4)

The exact optimal solution (λ∗, ξ∗) to eq. (4) can be computed by alternately performing two steps
until convergence: first, fixing ξ and optimizing λ, i.e., λ = ∥ξ⊺Σ

1
2 ∥2

F/2r, and second, fixing λ and
solving a concave quadratic program to optimize ξ. Furthermore, the optimal allocation a∗ can be
computed from ξ∗ as in Proposition 3.1.
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3.2 Robust Allocation for Group Egalitarian Welfare

We now consider the problem where we aim to maximize the welfare corresponding to the worst
group while using the robust approach for handling uncertainty. We can represent this problem as

max
a∈A

min
v∈V

min
G∈G

u(a,v, G) . (5)

This problem presents inherent challenges due to the non-smoothness of the inner-minimization
problem and the joint constraint on the uncertainties of the valuation matrices of different groups.
These factors make it difficult to compute the dual and reduce the problem or efficiently solve the
problem using the quadratic program technique described in Proposition 3.3. To streamline this
problem, we assume that the uncertainty sets for each group G ∈ G are independent of each other.
This allows us to represent the uncertainty set V as a Cartesian product of an individual group’s
uncertainty set, V =

⊗
G∈G VG. Furthermore, we can reorder the two inner-minimization problems

without compromising generality.

max
a∈A

min
G∈G

min
vG∈VG

1

|G|
a⊺GvG . (6)

We note that the problem in (6) is a concave-convex optimization problem that can be solved exactly
using the sub-gradient ascent method.

An alternative approach to optimizing the problem (6) involves taking the dual of the inner-most
minimization and reordering the inner-minimization over groups and the inner-maximization prob-
lem over the dual variables to obtain a single max-min problem. This simplified problem can then
be solved with iterated max-min quadratic programming. We illustrate this result in Proposition 3.4.
Proposition 3.4. The problem in (5) is equivalent to solving

max
ξ∈Λ,

λ∈Rg×l
0+ ,

β∈Rg×k
0+

min
G∈G

β⊺
GeG + c⊺GΣ

−1
∗ dG − 1

4
∥c⊺GΣ

−1/2
∗ ∥22 +

l∑
i=1

(
λG,i∥v̄⊺

G,iΣ
−1/2
∗ ∥22 − λG,ir

2
G,i

)
− ∥d⊺

GΣ
−1/2
∗ ∥22

(7)
and ∀G ∈ G : cG = (ξG − β⊺

GQG), dG =
∑l

i=1 λG,iv̄G,iΣ
−1
G,i, and Σ∗ =

∑l
i=1, λG,iΣ

−1
G,i. Let

ξ∗ be the optimal ξ in (7). Then, the optimal allocation a∗ satisfies the system of equations:

G ∈ G :
wG

|G| · aG ⪯ ξ∗
G, a ∈ A ,

The dual variables λG,βG, ζG and ξG for each group G are interpreted as in Proposition 3.1. The
optimization problem in (7) is concave with respect to the dual variables λ,β and ξ. Consequently,
we can solve it using an approach similar to that in proposition 3.3. Specifically, we employ the
max-min iterated quadratic programming [44], alternately fixing λ and optimizing the rest of the
dual variables (β, ξ) and vice versa until convergence.

Interestingly, even when optimizing the egalitarian welfare objective with only polyhedral uncer-
tainty sets, the robust egalitarian problem described in (7) simplifies to a straightforward linear pro-
gram. This is akin to what we observe in the robust utilitarian case (Proposition 3.2). We formalize
this finding in Proposition 3.5.
Proposition 3.5. In the case where the uncertainty set V is defined only by linear constraints, i.e.,
V = {v ∈ Rnm | Qv ⪰ e,v ⪰ 0}, the max-min-min problem in (5) is trivially transformable into
a linear program.

3.3 Robust Allocation for Monotonic Welfare Functions

We now extend our findings to a broader class of monotonic welfare functions. Specifically, we show
that when optimizing a monotonic welfare objective under the assumption that valuation uncertainty
sets across groups are independent, we can decompose the problem into sub-problems such that
we independently determine the worst valuation in the uncertainty set of each group, while jointly
optimizing the allocations of different groups.
Proposition 3.6. Consider an optimization problem of the form

max
a∈A

min
v∈V

WM (u(a,v, G1),u(a,v, G2), . . . ,u(a,v, Gg)) , (8)
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where the welfare function WM (·) is monotonic in the utility of groups. If the valuation uncertainty
sets are independent across groups, V =

⊗
G∈G VG, then, the problem in (8) simplifies to

max
a∈A

WM (min
v∈V

u(a,v, G1),min
v∈V

u(a,v, G2), . . . ,min
v∈V

u(a,v, Gg)) .

We note that the egalitarian problem in (5) is an instance of the class of optimization problem de-
scribed in (8). Furthermore, when the allocation and valuation uncertainty sets are convex and
compact, the problem in (8) can be solved using constrained convex-concave minimax optimization
algorithms [16, 24, 55].

4 Stochastic Welfare Optimization

When we have a distribution Dv over the valuation matrix, we leverage the CVaR measure to com-
pute high-confidence robust allocations for utilitarian and egalitarian welfare objectives.

4.1 CVaR Allocation for Utilitarian Welfare

We wish to find an allocation that maximizes the CVaRα of the utilitarian welfare. Let ṽ represent
the random valuation vector. Then, for any confidence level α, we can formulate this problem as:

max
a∈A

CVaRα

∑
G∈G

wG · u(a, ṽ, G)

 ≡ max
a∈A,b∈R

b− 1

α
E

v∼Dv

b−
∑

G∈G

wG

|G| · a
⊺
GvG


+


 , (9)

where (x)+ = max(x, 0) represents the positive part of x. Computing the exact expectation in this
problem may not be feasible for every distribution Dv. Therefore, we adopt a sampling-based ap-
proach to approximately optimize the CVaR of utilitarian welfare. We begin by drawing h samples
of the valuation matrix from Dv represented as v1,v2,v3, . . .vh. We then use these samples to
solve the problem described in (9) by solving the linear program outlined in Proposition 4.1.
Proposition 4.1. Given h samples of ṽ, i.e., v1,v2,v3, . . .vh from Dv, the optimal allocation for
the problem in (9) can be approximately computed by solving

max
a∈A

max
y∈Rh

0+,b∈R

b− 1

α

h∑
j=1

yj

 ∀j ∈ [1, h] : yj ≥ 1

h

b−
∑
G∈G

wG

|G| · a
⊺
Gv

j
G

 . (10)

The CVaR estimator used in (10) is a strongly consistent estimator [28]. Therefore, the approxima-
tion error of the objective in (10) goes to 0 as h → ∞. In proposition 4.3, we bound the sample
complexity of the problem in (10) when the valuation matrix is sub-Gaussian distributed.
Assumption 4.2. Let w̃ represent the random welfare corresponding to a given allocation a and
let f be its density function. Furthermore, let να(W ;a,v) denotes the α-percentile of the welfare
corresponding to allocation a. There exists universal constants η, δ′ ≥ 0, s.t., f(w) ≥ η ∀w ∈
[να(W ;a,v)− δ′

2 , να(W ;a,v) + δ′

2 ].

For any allocation a, let ĉh,α(a) represent the empirical estimate of CVaR of utilitarian welfare
computed from h samples and ch,α(a) represent the corresponding true value.
Proposition 4.3. Suppose that v is a multivariate sub-Gaussian with mean v̄ ∈ Rnm and covari-
ance proxy Σ ∈ Rnm×nm, i.e., ∃K ≥ 0 s.t. E

[
exp(λ(v − v̄)⊺z))

]
≤ exp(λ

2K2z⊺Σz/2),∀λ ∈
R,∀z ∈ Rnm and that Assumption 4.2 holds. Let |A| represent the number of feasible allo-

cations, a′G = wG

|G| · aG, and h=O

(
8max(maxa∈A a′⊺Σa′,8) log

(
6|A|

δ

)
ε2(α)2 min(η2,1)

)
where δ ∈ (0, 1). Then,

Pr[∀a ∈ A : |ĉh,α(a)− cα(a)| ≤ ε] ≥ 1− δ.

When the valuation v is normally distributed, we can circumvent the sampling approach and instead
solve the problem directly by optimizing a quadratic optimization problem (Proposition 4.4), which
depends solely on the mean and covariance of the valuation matrix v.
Proposition 4.4. If the valuation v is distributed as a multivariate Gaussian, i.e., v ∼ N (v̄,Σ),
then, the optimization problem in (9) simplifies to

max
a∈A

a⊺v̄ − ϕ(Φ−1(1− α))

α

√
a⊺Σa . (11)
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Figure 1: Left: CVaR as noise increases for AAMAS 2015. Right: Convergence behavior of the
Iterated Quadratic Program (IQP) vs. Subgradient Ascent (SA) approach on AAMAS 2015.

The problem in (11) is concave and can be solved exactly using the projected gradient ascent method.

4.2 CVaR Allocation for Group Egalitarian Welfare

For our final objective, we wish to optimize egalitarian welfare under uncertainty using the CVaR
approach. We formulate this optimization problem as

max
a∈A

CVaRα

[
min
G∈G

u(a, ṽ, G)

]
≡ max

a∈A,w∈R

w − 1

α
E

[(
w −min

G∈G

1

|G|
· a⊺GṽG

)
+

] .

(12)

To optimize the problem described in (12), we solve a linear program similar to the one used for
optimizing the CVaR Utilitarian objective in (9). We refer the readers to Proposition H.3 for more
details. When the valuation matrix v is normally distributed and the uncertainty sets of different
groups are independent, the result is a quadratic program characterized by a linear objective and
quadratic constraints, as detailed in proposition C.1.

5 Experiments

We run experiments on three reviewer assignment datasets. The datasets contain bids from the
International Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2015, 2016,
and 2021 [40, 41].1 We consider the papers as the “agents” and the reviewers as the “items.” This is
a fairly standard assumption in most recent reviewer assignment approaches, reflecting the primary
goal of peer review to assign qualified and interested reviewers to papers [14, 29, 30, 37, 45, 54].

Reviewers issue bids of yes, maybe, no, or no response. We run two experiments with this
data. In one, we binarize the bids such that yes and maybe are considered affirmative and no is
considered negative, while in the other we convert the bids to numerical scores such that yes is 1,
maybe is .5, and no is 0.01. Under the binarized model, we fit a logistic matrix factorization model
to predict whether the bid is affirmative or negative, and in the continuous model, we fit a Gaussian
process matrix factorization model [35]. We derive probability distributions and uncertainty sets
from these models. More details on prediction and uncertainty set construction are in Appendix E.
These datasets do not contain groups of papers and reviewers, so we create 4 roughly balanced
clusters of reviewers and papers for each dataset using the procedure outlined in Appendix F. We
define our valid set of assignments A as follows. For each paper a ∈ N , we set κa = κ̄a = 3 for all
a in AAMAS 2015, and κa = κ̄a = 2 for all a in AAMAS 2016 and 2021. For each reviewer i, we
set ψ

i
= 0 and ψ̄i = 15 for 2015 and 2016 and 4 for 2021. We optimize and evaluate CVaR0.01; we

take 4, 000 samples from the distribution to optimize for CVaR using the sampling-based approach,
and we take 10, 000 samples to estimate the CVaR for evaluation. We optimize and evaluate the
adversarial welfares at the δ = 0.3 level (there is a 70% chance the true values lie in the uncertainty
set). All results are averaged over 5 runs of subsampling 20% of each dataset.

1Available at https://preflib.simonrey.fr/dataset/00037.
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Table 2: Performance of different allocations across each metric on the AAMAS 2015 dataset.

Allocation Evaluation Objective
USW GESW CVaR USW CVaR GESW Rob. USW Rob. GESW

USW 1.00± 0 1.00± 0 1.00± 0 1.00± 0 0± 0 0± 0
GESW 0.97± 0.01 1.00± 0 0.97± 0.01 0.97± 0.02 0± 0 0± 0
CVaR USW 1.00± 0 0.99± 0 1.00± 0 0.99± 0 0± 0 0± 0
CVaR GESW 0.98± 0 0.99± 0 0.97± 0.01 1.00± 0 0± 0 0± 0
Rob. USW 0.92± 0.01 0.90± 0.02 0.92± 0.01 0.90± 0.02 1.00± 0 1.00± 0
Rob. GESW 0.89± 0.04 0.85± 0.06 0.89± 0.04 0.86± 0.06 0.88± 0.02 1.00± 0

5.1 Results

Overall Performance Section 5.1 shows the results for the binarized version of AAMAS 2015 bids.
Similar tables for the 5 other settings are included in Appendix G. Each row shows the metrics for
the allocation produced by the method which optimizes for the objective shown in the left-most col-
umn. Objective values are normalized by dividing by the maximum value of that objective per seed.
All methods have 0 adversarial welfare, even at the δ = 0.3 level, indicating that if robustness to
adversarial noise is desired, it is very important to consider this objective explicitly. We approximate
the optimal CVaR0.01 using 1000 samples, which leaves some room for sampling error as evidenced
by the strong performance of the baseline USW and GESW allocations on the CVaR0.01 measure.
However, relatively little noise is actually present in this dataset, as the CVaR0.01 is relatively high
for both USW and GESW in all cases.

Robustness under Increasing Uncertainty Figure 1 shows the CVaR0.01 on the Gaussian version
of all three datasets as we artificially increase the amount of noise. We multiply the standard devia-
tions of the Gaussian distributions by a scalar and optimize for the CVaR or the central estimate of
the USW and GESW. We then plot CVaR0.01 as noise increases. Although the CVaR approach is
less important at low noise levels, the CVaR of welfare decreases for both welfare measures as noise
increases. GESW has a sharper decline than USW. We see that as the noise increases, the CVaR0.01

of the baseline USW and GESW maximizing allocations drops off relative to the same value for the
CVaR-optimized allocation.

Runtime Finally, for the soft robust optimization setting with ellipsoidal uncertainty sets (derived
from confidence intervals over the Gaussian process matrix factorization), we compare the IQP
approach Proposition 3.3 to projected sub-gradient ascent on the original max-min problem. We find
that IQP converges much faster than the subgradient ascent algorithm; see Figure 3. Sub-gradient
ascent fails to converge in 1, 000 iterations for the adversarial GESW objective on all datasets and
the USW objective on AAMAS 2021.

6 Limitations and Conclusion

The CVaR approach requires solving linear programs with a large number of samples to be effective,
which makes them computationally expensive. One potential solution is to leverage importance sam-
pling methods to reduce the variance of the estimator [17, 58]. Furthermore, future research could
benefit from empirically and theoretically analyzing other fairness objectives like Nash Welfare [13],
Gini Index [23], and Envy-Freeness [38].

In conclusion, we explore the stochastic and robust optimization regimes for utilitarian and group-
wise welfare objectives. The robust optimization algorithms depend on the form of the uncertainty
set. We show that when the uncertainty set has linear constraints only, the resulting problem is
an LP and can be solved efficiently. Under ellipsoidal constraints, we demonstrate an iterative
quadratic programming approach converges much faster than the naive subgradient approach for
utilitarian welfare. However, the robust egalitarian welfare remains challenging to optimize. In the
stochastic regime, we lay out the sample complexity of CVaR for the utilitarian welfare objective.
We demonstrate the feasibility of estimating probability distributions and uncertainty sets on three
years of bid data from AAMAS, and show that the robust and CVaR approaches laid out in this paper
combat the uncertainty present in these three datasets.
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A Additional Related Work

Gorissen et al. [25] provide an excellent overview of optimization under uncertainty, including tech-
niques used in this work, while Ben-Tal et al. [6], Bertsimas et al. [7] offer additional background on
robust optimization. A standard approach in this regime is analyzing the dual of the uncertainty, as
we generally do in this work. Stochastic optimization has a wide literature; the books by Birge and
Louveaux [8], Levy et al. [36], Prékopa [47], Ruszczyński and Shapiro [52] present wide-ranging
introductions to the topic. One of the primary approaches to stochastic optimization is conditional
value at risk (CVaR), which can often be approximately optimized by sampling and optimizing over
an objective composing the different samples [34, 39, 50]. We take this approach in our paper.

B Broader Impacts

We believe this work has the potential for a significant positive societal impact. Fair resource al-
location algorithms are essential for various systems, including assigning reviewers in peer review
processes, allocating resources to homeless and low-income populations, distributing emergency
response resources during natural disasters, and resettling refugees. In this work, we develop meth-
ods for efficiently optimizing allocations of constrained resources under various fairness objectives
while addressing uncertainty in resource preferences. These methods can be directly applied to the
aforementioned problems. However, we advise users to conduct extensive testing on similar datasets
before deploying these algorithms in real-world scenarios.

C Gaussian CVaR for Egalitarian Welfare

Proposition C.1. If v1,v2, · · · ,vg are i.i.d and normally distributed, i.e., ∀G ∈ G, vG ∼
N (v̄G,ΣG), then, the optimization problem in (12) simplifies to

max
a∈A,t∈R

t

s.t. ∀G ∈ G :

(
1

|G| · a
⊺
Gv̄G − t

)2

≥

(
1

|G| ·
ϕ(Φ−1(1− α))

(α)

)2

a⊺
GΣGaG

∀G ∈ G :

(
1

|G| · a
⊺
Gv̄G − t

)
≥ 0 .

(13)

The problem in (13) is a second order conic program (SOCP) and can be solved using popular SOCP
solvers in CVXPY library [19].

D Constructing uncertainty sets

In this section we demonstrate a simple and natural approach to construct an uncertainty set using
a logistic regression estimator. Logistic regression models with bounded cross-entropy loss result
in polyhedral uncertainty sets. Replacing the logistic regression model with a model with bounded
squared-error loss, or simply taking the confidence interval of a multivariate Gaussian, results in
truncated ellipsoidal uncertainty sets. We construct uncertainty sets per group in all cases.

Assume we have a discrete set of c values L ⊆ R, with L = {l1, . . . lc}. For each agent i and item
type j we denote the true distribution over values p∗(l|(i, j)) and the distribution predicted by the
logistic regression model is p̂(l|(i, j)).
We estimate the cross-entropy loss of the model on a test set T , where |T | = t. This test set can be
segmented by the group identity of the agent, such that we have TG1

, TG2
, . . . TGg

for each of the g
groups (with sizes tG1

, . . . tGg
). We assume that the test set comes from the same distribution as the

agent-item pairs of the assignment problem; this can be achieved either during dataset construction
or by limiting the assignments (through the C constraints) to better reflect the test distribution. We
can also apply likelihood reweighting in our uncertainty set construction, as in [14], though we do
not do so here.

For an agent a and item type i, the cross-entropy loss of the distribution p̂ with respect to the
distribution p is defined as
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H(p(l|(a, i)), p̂(l|(a, i))) .
= −

∑
l∈L p(l|(a, i)) log p̂(l|(a, i)). For each TG, we compute the mean

of the cross-entropy loss ξ̂G = 1
tG

∑
(a,i)∈TG

H(p(l|(a, i)), p̂(l|(a, i))), as well as the standard error

of the mean η̂G =
(

1
tG

∑
(i,j)∈TG

(H(p(l|(a, i)), p̂(l|(a, i)))− ξ̂G)
2
) 1

2

. We model the distribution

over cross-entropy losses for group G as N (ξ̂G, η̂G). We want an uncertainty set V such that the
true values lie outside V with probability at most δ. Thus, using a union bound, we require each
uncertainty set VG for individual groups to contain the true valuations with probability at least 1 −
δ
g . We can thus give the bound that the cross entropy loss is at most Φ−1(1 − δ

g , ξ̂G, η̂G), where
Φ−1(p, µ, σ) denotes the p percentile of a normal distribution with mean µ and standard deviation
σ.

In our assignment problem, for each group G with agents NG we obtain the uncertainty set

1

tGm

∑
a∈NG,i∈I

H(p(l|(a, i)), p̂(l|(a, i))) ≤ Φ−1(1− δ

g
, ξ̂G, η̂G) .

The bound can be made tighter if we restrict some pairs using C, in which case the cross-entropy
term on the left side is only averaged over the pairs which are not restricted.

E Logistic and Gaussian Process Matrix Factorization

Both models define probability distributions over outcomes, which we use to compute and evaluate
the CVaR of utilitarian and egalitarian welfare. For the logistic model, we build a polyhedral un-
certainty set by estimating the cross-entropy loss on a held-out test set, and for the Gaussian process
model we simply consider the confidence intervals of the resulting normal distribution.

For the binarized bids, we first set aside some of the observed bids as a test set. We estimate the
missing bids and the bids for the held-out test pairs using logistic matrix factorization. Setting a
hidden dimension size d, we construct two matrices X ∈ Rn×d and Y ∈ Rm×d. We set d = 20.
Let V ∗ denote the true binarized bid matrix, where we observe entries for the training set pairs
(a, i) ∈ T . We predict the probability of an affirmative bid as σ((XY ⊺)a,i) where σ is the logistic
sigmoid function. We select X and Y to minimize the loss function∑

(a,i)∈T

−V ∗
a,i ln

(
σ((XY ⊺)a,i)

)
− V ∗

a,i ln
(
(XY ⊺)a,i

)
.

For CVaR, we take samples from the distribution defined by σ(XY ⊺), assuming all pairs are
independently-distributed. We also construct an uncertainty set as described in Appendix D using
the cross-entropy loss on the test pairs.

Under the Gaussian process matrix factorization model [35], we simply predict a mean and variance
of a normal distribution for each reviewer-paper pair. We can then sample values independently for
each pair, or give a confidence interval for the joint Gaussian with mn− 1 degrees of freedom.

F Grouping Papers and Reviewers

We group papers and reviewers as follows: given the real-valued bids in the set {0.01, .5, 1} we set
unknown bids to be 0. We then construct a graph with all reviewers and papers as nodes, and the bid
score between reviewers and papers is the edge weight. All inter-reviewer and inter-paper edges are
set to 0 edge weight. We apply spectral embedding with 5 dimensions to transform the nodes into
vectors, and cluster the resulting vectors into 4 clusters to obtain 4 groups containing both papers
and reviewers. To ensure a balance of reviewers and papers across clusters, we employ Lloyd’s
algorithm for KMeans clustering with the modification that during each assignment step we enforce
a lower bound on the number of papers and number of reviewers assigned to each cluster.

G Additional Experiments

For the binarized AAMAS 2016 and 2021 datasets, Tables 3 and 4 show the performance of the
baseline USW and GESW maximizing allocations, the CVaR0.01 USW and GESW maximizing
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Figure 2: CVaR0.01 as noise increases for AAMAS 2016 and 2021.
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Figure 3: Convergence of the IQP vs. subgradient ascent on AAMAS 2016 dataset for the adversar-
ial USW objective. The IQP (in blue) converges much faster.

allocations, and the adversarially-robust USW and GESW maximizing allocations at the δ = 0.3
level. Because so many of the bids in AAMAS 2021 are recorded as no, since no is the default bid,
we randomly select 90% of the no bids to be converted to no response.

Tables 5 to 7 show the same results for the Gaussian matrix factorization version of the 3 datasets,
with the CVaR0.01 estimated by sampling from the estimated Gaussian distribution, and the adver-
sarial welfare computed over the truncated ellipsoidal uncertainty set corresponding to the 1 − δ
confidence interval of the Gaussian. Results are not reported for the adversarial GESW approach,
since the basic subgradient ascent approach fails to converge even after 1, 000 iterations.

Table 3: Performance of different allocations across each metric on the AAMAS 2016 dataset.

Allocation Evaluation Objective
USW GESW CVaR USW CVaR GESW Rob. USW Rob. GESW

USW 1.00± 0 1.00± 0 1.00± 0 1.00± 0 0± 0 0± 0
GESW 0.99± 0 1.00± 0 0.99± 0 0.99± 0.01 0± 0 0± 0
CVaR USW 0.99± 0 0.98± 0.01 0.99± 0 0.98± 0.01 0± 0 0± 0
CVaR GESW 0.99± 0.01 0.99± 0.01 0.98± 0.01 1.00± 0 0± 0 0± 0
Rob. USW 0.91± 0.02 0.87± 0.03 0.91± 0.02 0.90± 0.03 1.00± 0 1.00± 0
Rob. GESW 0.76± 0.05 0.66± 0.04 0.76± 0.05 0.65± 0.05 0.74± 0.10 1.00± 0
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Table 4: Performance of different allocations across each metric on the AAMAS 2021 dataset.

Allocation Evaluation Objective
USW GESW CVaR USW CVaR GESW Rob. USW Rob. GESW

USW 1.00± 0 1.00± 0 1.00± 0 1.00± 0 0± 0 0.40± 0.49
GESW 1.00± 0 1.00± 0 1.00± 0 1.00± 0 0± 0 0.40± 0.49
CVaR USW 1.00± 0 1.00± 0 1.00± 0 1.00± 0 0± 0 0.40± 0.49
CVaR GESW 1.00± 0 1.00± 0 0.99± 0 1.00± 0 0± 0 0.40± 0.49
Rob. USW 0.85± 0.04 0.69± 0.14 0.84± 0.05 0.64± 0.19 1.00± 0 1.00± 0
Rob. GESW 0.48± 0.09 0.32± 0.12 0.43± 0.09 0.20± 0.12 0.07± 0.08 1.00± 0

Table 5: Performance of different allocations across each metric on the Gaussian AAMAS 2015
dataset.

Allocation Evaluation Objective
USW GESW CVaR USW CVaR GESW Rob. USW Rob. GESW

USW 1.00± 0 0.95± 0.03 1.00± 0 0.94± 0.04 0.61± 0.19 0.34± 0.34
GESW 0.87± 0.08 1.00± 0 0.86± 0.09 0.98± 0.02 0.42± 0.30 0.32± 0.35
CVaR USW 1.00± 0 0.94± 0.03 1.00± 0 0.96± 0.04 0.63± 0.19 0.36± 0.33
CVaR GESW 0.90± 0.06 0.99± 0.01 0.90± 0.07 1.00± 0 0.51± 0.26 0.36± 0.33
Rob. USW 0.86± 0.07 0.76± 0.12 0.88± 0.06 0.80± 0.10 1.00± 0 1.00± 0

Table 6: Performance of different allocations across each metric on the Gaussian AAMAS 2016
dataset.

Allocation Evaluation Objective
USW GESW CVaR USW CVaR GESW Rob. USW Rob. GESW

USW 1.00± 0 0.99± 0.01 1.00± 0 0.99± 0.02 0.47± 0.27 0.25± 0.38
GESW 0.91± 0.06 1.00± 0 0.91± 0.07 0.98± 0.01 0.37± 0.32 0.24± 0.38
CVaR USW 1.00± 0 0.98± 0.02 1.00± 0 0.99± 0.01 0.52± 0.25 0.27± 0.37
CVaR GESW 0.92± 0.05 0.98± 0.02 0.92± 0.06 1.00± 0 0.41± 0.31 0.28± 0.37
Rob. USW 0.84± 0.08 0.77± 0.12 0.86± 0.07 0.84± 0.09 1.00± 0 1.00± 0

Table 7: Performance of different allocations across each metric on the Gaussian AAMAS 2021
dataset.

Allocation Evaluation Objective
USW GESW CVaR USW CVaR GESW Rob. USW Rob. GESW

USW 1.00± 0 1.00± 0.01 1.00± 0 1.00± 0.01 0.53± 0.26 0.21± 0.40
GESW 0.80± 0.12 1.00± 0 0.79± 0.12 0.99± 0.01 0.24± 0.39 0.20± 0.40
CVaR USW 1.00± 0 1.00± 0.01 1.00± 0 1.00± 0.01 0.53± 0.26 0.21± 0.40
CVaR GESW 0.85± 0.08 1.00± 0 0.84± 0.08 1.00± 0 0.36± 0.34 0.20± 0.40
Rob. USW 0.81± 0.11 0.69± 0.16 0.81± 0.11 0.71± 0.16 1.00± 0 1.00± 0
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H Proofs

H.1 Proof of Proposition 3.1

Proposition 3.1. The problem in (1) is equivalent to solving

max
ξ∈Λ,λ∈Rl

0+,

β∈Rk
0+

c⊺Σ−1
[L]d

⊺ + β⊺e− 1

4
∥c⊺Σ−1/2

[L] ∥22 +
l∑

i=1

λi∥v̄⊺
iΣ

−1/2
i ∥22 − ∥d⊺Σ

−1/2

[L] ∥22 −
l∑

i=1

λir
2
i , (2)

where c = (−β⊺Q+ξ) and d =
∑l

i=1 λiv̄
⊺
i Σ

−1
i , and Σ[L] =

∑l
i=1 λiΣ

−1
i . Let ξ∗ be the optimal

ξ in (2). Then, the optimal allocation a∗ can be derived from ξ∗ by solving the system of equations:

G ∈ G :
wG

|G| · aG ⪯ ξ∗
G, a ∈ A ,

Proof. Let ∀G ∈ G,a′G = wG·aG

|G| . Consider the inner-minimization problem:

min
v∈Rnm

∑
G∈G

wG · u(a,v, G)

∀i ∈ [1, l], (v − v̄i)Σ
−1/2
i (v − v̄i) ≤ r2i

Qv ⪰ e

v ⪰ 0 ,

(14)

We will use the Lagrangian method for computing the dual of the above problem. The Lagrangian
for the above problem is given by

L(v,λ ∈ Rl
0+,β ∈ Rk, ζ ∈ Rnm) = a′

⊺
v +

l∑
i=1

λi

(
v − v̄i)Σ

−1
i (v − v̄i)− r2i

)
− β⊺(Qv − e)− ζ⊺v .

(15)

From the first-order optimality conditions, we get

∂L(v,λ ∈ Rl
0+,β ∈ Rk, ζ ∈ Rnm)

∂V
= 0

a′ +

l∑
i=1

2λi(v − v̄i)Σ
−1
i − β⊺Q− ζ = 0

=⇒ v =

∑l
i=1 2λiv̄

⊺
i Σ

−1
i − (a′ − β⊺Q− ζ)∑l

i=1 2λiΣ
−1
i

.

Substituting this value of v in (15), we get,

max
λ∈Rl,

β∈Rnm,
ζ∈Rnm

− 1

4

(a′ − β⊺Q− ζ
)⊺ l∑

i=1

λiΣ
−1
i

−1 (
a′ − β⊺Q− ζ

)+

l∑
i=1

λiv̄
⊺
i Σ

−1
i v̄i

−

 l∑
i=1

λiv̄iΣ
−1
i

 l∑
i=1

λiΣ
−1
i

−1 l∑
i=1

λiv̄iΣ
−1
i

⊺

+ (a′ − β⊺Q− ζ)⊺

 l∑
i=1

λiΣ
−1
i

−1 l∑
i=1

λiv̄
⊺
i Σ

−1
i

⊺

−
l∑

i=1

λir
2
i + β⊺e

λ ⪰ 0

β ⪰ 0

ζ ≥ 0

(16)
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Using change of variables ζ = a′−ξ, and combining the dual with the outer-maximization problem
in (1), we get

max
a∈A,λ∈Rl

0+,β∈Rk
0+,

ζ∈Rnm
0+ ,ξ∈Rnm

− 1

4
∥c⊺Σ−1/2

[L] ∥22 +
l∑

i=1

λi∥v̄⊺
i Σ

−1/2
i ∥22

− ∥d⊺Σ
−1/2
[L] ∥22 + c⊺Σ−1

[L]d
⊺ −

l∑
i=1

λir
2
i + β⊺e

s.t. ζ = a′ − ξ ,

(17)

where c = (β⊺Q + ξ), Σ[L] =
(∑l

i=1 λiΣ
−1
i

)
, and d =

∑l
i=1 λiv̄

⊺
i Σ

−1
i . Note that the above

optimization problem is concave; from affine-composition rule in convex optimization, we retain the
concavity of the objective after the change of variable and the allocation a only appears in a linear
constraint which is convex.

We further simplify the above problem by eliminating the allocation variables a and the dual variable
ζ and subsequently deriving them from the solution of the resultant problem.

Note that in the above problem a′ − ζ = ξ. Let (a∗, ζ∗) represent an optimal (a, ζ) pair for
the problem in (17). Note that there can be multiple pairs of (a, ζ) that are optimal. Let a′∗G =
wG

|G| a
∗
G,∀G ∈ G. To eliminate ζ and a, we need to find a set of feasible ξ, which we denote by Λ,

such that there existing a ξ′ ∈ Ξ such that ξ′ = a′
∗ − ζ∗ for at least one optimal pair (a∗, ζ∗). It is

easy to see that if there exists such a ξ′ ∈ Ξ, then, ξ′ maximizes the objective in (17). Furthermore,
it is easy to verify that Λ = A = Rnm

0+ = {ξ ∈ Rnm | ∀a ∈ N :
∑

i∈I ξam+i ≤ κ̄a,∀i ∈ I :∑
a∈N ξam+i ≤ ψ̄i, ξ ⪯ c} satisfies the above criteria for optimality.

Thus, we can break down the problem in (17) into two sub-problems. In the first problem, we obtain
the optimal value of λ, ξ and β by solving:

ζ∗,β∗, ξ∗ = argmax
ζ∈Rnm

0+ ,β∈Rk
0+,

ξ∈Λ

− 1

4
∥c⊺Σ−1/2

[L] ∥22 +
l∑

i=1

λi∥v̄⊺
i Σ

−1/2
i ∥22 − ∥d⊺Σ

−1/2
[L] ∥22

+ c⊺Σ−1
[L]d

⊺ −
l∑

i=1

λir
2
i + β⊺e ,

where c = (−β⊺Q + ξ) and d =
∑l

i=1 λiv̄
⊺
i Σ

−1
i , and Σ[L] =

(∑l
i=1 λiΣ

−1
i

)
. Then, the set

of optimal (a, ζ) pairs are computed by solving a system of equations: {(a, ζ) | a ∈ A, G ∈
G, wG

|G| · aG − ζG = ξ∗G, ζ ∈ Rnm
0+ }.

H.2 Proof of proposition 3.2

Proposition 3.2. In the case where the uncertainty set V is defined purely by linear constraints, i.e.,
V = {v ∈ Rnm

0+ | Qv ⪰ e}, the optimal allocation a∗ for the problem in (1) can be computed by
solving the linear program:

max
a∈A,β∈Rk

0+

β⊺e s.t. ∀G ∈ G : β⊺
GQG ⪯ wG

|G| aG . (3)

Proof. Consider the following inner-minimization problem. Let ∀G ∈ G,a′G = wG·aG

|G| . Consider
the inner-minimization problem:

min
v∈Rnm

∑
G∈G

wG · u(a,v, G)

Qv ⪰ e

v ⪰ 0 ,
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We compute the dual of the above problem using the Lagrangian method.

L(v,λ ∈ Rl
0+,β ∈ Rk

0+, ζ ∈ Rnm
0+ ) = a′

⊺
v − β⊺(Qv − e)− ζ⊺v

= (a′ − β⊺Q− ζ)⊺v + β⊺e

L(λ ∈ Rl
0+,β ∈ Rk

0+, ζ ∈ Rnm
0+ ) =

{
β⊺e (a′ − β⊺Q− ζ) ⪰ 0

−∞ otherwise

(18)

Therefore, the dual is given by

max
β∈Rk

0+,ζ∈Rnm
0+

β⊺e

β⊺Q− ζ ⪯ a′ .
(19)

Since ζ is non-negative, we can eliminate it to get

max
β∈Rk

0+

β⊺e

β⊺Q ⪯ a′ .
(20)

Combining the dual with the outer-maximization problem in (1) yields the final result.

H.3 Proof of proposition 3.3

Proposition 3.3. Suppose that the set V in (1) is defined by a single truncated ellipsoidal constraint
i.e., V = {v ∈ Rnm

0+ | (v − v̄)Σ−1
i (v − v̄) ≤ r2}. The problem in (1) is equivalent to solving

max
λ∈R0+,ξ∈Λ

(
ξ⊺v̄ − ∥ξ⊺Σ

1
2 ∥2F

4λ
− λr2

)
. (4)

The exact optimal solution (λ∗, ξ∗) to eq. (4) can be computed by alternately performing two steps
until convergence: first, fixing ξ and optimizing λ, i.e., λ = ∥ξ⊺Σ

1
2 ∥2

F/2r, and second, fixing λ and
solving a concave quadratic program to optimize ξ. Furthermore, the optimal allocation a∗ can be
computed from ξ∗ as in Proposition 3.1.

Proof. Setting k = 0 and l = 1 in (2) yields the stated optimization problem. In appendix H.4,
we established that this dual is concave in λ and ξ. Unfortunately, the objective in (4) is a cubic
polynomial that is difficult to optimize exactly using standard solvers. However, since the objective
is concave and differentiable, we can leverage a block coordinate descent like technique to achieve
the global optimal solution, i.e., we can alternate between optimizing (ζ, ξ,a), which is a quadratic

problem, and optimizing (λ) which has a closed form solution λ =
∥ξ⊺Σ

1
2 ∥2

F
2r , until convergence.

Since the objective is concave and differentiable, the above algorithm is guaranteed to converge to
the global optimal solution [11].

H.4 Proof of proposition 3.4

Proposition 3.4. The problem in (5) is equivalent to solving

max
ξ∈Λ,

λ∈Rg×l
0+ ,

β∈Rg×k
0+

min
G∈G

β⊺
GeG + c⊺GΣ

−1
∗ dG − 1

4
∥c⊺GΣ

−1/2
∗ ∥22 +

l∑
i=1

(
λG,i∥v̄⊺

G,iΣ
−1/2
∗ ∥22 − λG,ir

2
G,i

)
− ∥d⊺

GΣ
−1/2
∗ ∥22

(7)
and ∀G ∈ G : cG = (ξG − β⊺

GQG), dG =
∑l

i=1 λG,iv̄G,iΣ
−1
G,i, and Σ∗ =

∑l
i=1, λG,iΣ

−1
G,i. Let

ξ∗ be the optimal ξ in (7). Then, the optimal allocation a∗ satisfies the system of equations:

G ∈ G :
wG

|G| · aG ⪯ ξ∗
G, a ∈ A ,
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Proof. Consider the following optimization problem.

max
a∈A

min
G∈G

min
vG∈VG

1

|G|
a⊺GvG

∀i ∈ [1, l], ∀G ∈ G (vG − v̄i,G)Σ
−1/2
i,G (vG − v̄i,G) ≤ r2i,G

∀G ∈ G, QGvG ⪰ eG
vG ⪰ 0 .

(21)

It is important to note that the inner-minimization is a convex optimization problem and the outer-
maximization is a concave maximization problem. This is due to the fact that affine functions are
either concave or convex and minimum of concave objectives is concave.

Furthermore, the inner-most minimization over the uncertainty set of valuation matrices is inde-
pendent for each group. Thus, simply replacing each of these minimization problems with their
respective duals yields the following problem.

max
a∈A

min
G∈G

max
λG∈Rl,

βG∈Rnm,
ζG∈Rnm

− 1

4

(a′
G − β⊺

GQG − ζG
)⊺

(

l∑
i=1

λiΣ
−1
i )−1

(
a′
G − β⊺

GQG − ζG
)+

l∑
i=1

λG,iv̄
⊺
G,iΣ

−1
G,iv̄G,i −

 l∑
i=1

λG,iv̄G,iΣ
−1
G,i

 l∑
i=1

λG,iΣ
−1
G,i

−1 l∑
i=1

λG,iv̄G,iΣ
−1
G,i

⊺

+ (a′
G − β⊺

GQG − ζG)
⊺

 l∑
i=1

λG,iΣ
−1
G,i

−1 l∑
i=1

λG,iv̄
⊺
G,iΣ

−1
G,i

⊺

−
l∑

i=1

λG,ir
2
G,i + β⊺

GeG

λG ⪰ 0

βG ⪰ 0

ζG ≥ 0 .
(22)

Using the change of variables ζG = a′G − ξG∀G ∈ G, and combining the dual with the outer-
maximization problem, we get

max
a∈A

min
G∈G

max
λG∈Rl,

βG∈Rnm,
ζG∈Rnm

− 1

4
∥c⊺GΣ

−1/2
∗ ∥22 +

l∑
i=1

λG,i∥v̄⊺
G,iΣ

−1/2
G,i ∥

2
2

− ∥d⊺
GΣ

−1/2
∗ ∥22 − c⊺GΣ

−1
∗ d⊺

G −
l∑

i=1

λG,ir
2
G,i + β⊺

GeG

s.t. ζG = a′G − ξG ,

(23)

where ∀G ∈ G, cG = (β⊺
GQG + ξG), Σ∗ =

(∑l
i=1 λG,iΣ

−1
G,i

)
, and dG =

∑l
i=1 λG,iv̄

⊺
G,iΣ

−1
G,i.

Since the inner maximization for each group is independent of the other groups, we can re-order
the inner minimization over groups and the inner-maximization problem. Thus, without loss of
generality, we can write the above optimization problem as

max
a∈A,ζ∈Rnm,λ∈Rg×l

0+ ,

β∈Rg×k
0+ ,ξ∈Rnm

min
G∈G

− 1

4
∥c⊺GΣ

−1/2
∗ ∥22 +

l∑
i=1

λi,G∥v̄⊺
i,GΣ

−1/2
∗ ∥22 − ∥d⊺

GΣ
−1/2
∗ ∥22

− c⊺GΣ
−1
∗ d⊺

G −
l∑

i=1

λG,ir
2
i,G + β⊺

GeG

s.t. ξG =
aG
|G|

− ζG ,

(24)
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Using the same technique as in appendix H.1, we can simplify the problem by eliminating the
variables a and ζ in the above problem and later deriving them from the optimal ξ.

Eliminating ζ and a in (24), we get the following optimization problem.

λ∗,β∗, ξ∗ = argmax
,λ∈Rg×l

0+ ,β∈Rg×k
0+ ,ξ∈Λ

min
G∈G

− 1

4
∥c⊺GΣ

−1/2
∗ ∥22 +

l∑
i=1

λG,i∥v̄⊺
G,iΣ

−1/2
∗ ∥22 − ∥d⊺

GΣ
−1/2
∗ ∥22

− c⊺GΣ
−1
∗ dG −

l∑
i=1

λG,ir
2
G,i + β⊺

GeG ,

(25)
where ∀G ∈ G, cG = (ξG − β⊺

GQG), dG =
∑l

i=1 λG,iv̄G,iΣ
−1
G,i, and Σ∗ =

(∑l
i=1, λG,iΣ

−1
G,i

)
.

H.5 Proof of proposition 3.5

Proposition 3.5. In the case where the uncertainty set V is defined only by linear constraints, i.e.,
V = {v ∈ Rnm | Qv ⪰ e,v ⪰ 0}, the max-min-min problem in (5) is trivially transformable into
a linear program.

Proof. Substituting l = 0 in (7), we get

max
a∈A,β∈Rg×k

min
G∈G

β⊺
GeG

β⊺
GQG ⪯ a′G ,

(26)

where a′ = a
|G|∀G ∈ G. Using simple algebraic manipulations, we can write the above optimization

problem as
max

a∈A,β∈Rg×k,t∈R
t

∀G ∈ G : t ≤ β⊺
GeG

∀G ∈ G :β⊺
GQG ⪯ a′G ,

(27)

H.6 Proof of Proposition 3.6

Proposition 3.6. Consider an optimization problem of the form

max
a∈A

min
v∈V

WM (u(a,v, G1),u(a,v, G2), . . . ,u(a,v, Gg)) , (8)

where the welfare function WM (·) is monotonic in the utility of groups. If the valuation uncertainty
sets are independent across groups, V =

⊗
G∈G VG, then, the problem in (8) simplifies to

max
a∈A

WM (min
v∈V

u(a,v, G1),min
v∈V

u(a,v, G2), . . . ,min
v∈V

u(a,v, Gg)) .

Proof. The result directly follows from the monotonic property of the welfare function and the
independence of the uncertainty sets across groups.

H.7 Proof of proposition 4.1

Proposition 4.1. Given h samples of ṽ, i.e., v1,v2,v3, . . .vh from Dv, the optimal allocation for
the problem in (9) can be approximately computed by solving

max
a∈A

max
y∈Rh

0+,b∈R

b− 1

α

h∑
j=1

yj

 ∀j ∈ [1, h] : yj ≥ 1

h

b−
∑
G∈G

wG

|G| · a
⊺
Gv

j
G

 . (10)
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Proof. For any random utility X , CVaRα[X] can be written as

CVaRα[X] = max
b∈R

b− 1

α
E [b−X]+ , (28)

where (t)+ = max(t, 0). Given a posterior distribution of valuations Dv, we generate h samples of
the valuation matrix, i.e., v1, v2 . . .vh, and use it to empirically estimate the expectation in (28).

max
a∈Rn×m

max
y∈Rh,b∈R

b− 1

α

h∑
j=1

yj


∀j ∈ [1, h] yj ≥ 0

∀j ∈ [1, h] yj ≥
1

h
b− 1

h

∑
G∈G

⟨aG,vj
G⟩F − η

∑
G∈G

⟨aG, v̄G⟩F

a ∈ A .

(29)

H.8 Proof of proposition 4.3

Proposition 4.3. Suppose that v is a multivariate sub-Gaussian with mean v̄ ∈ Rnm and covari-
ance proxy Σ ∈ Rnm×nm, i.e., ∃K ≥ 0 s.t. E

[
exp(λ(v − v̄)⊺z))

]
≤ exp(λ

2K2z⊺Σz/2),∀λ ∈
R,∀z ∈ Rnm and that Assumption 4.2 holds. Let |A| represent the number of feasible allo-

cations, a′G = wG

|G| · aG, and h=O

(
8max(maxa∈A a′⊺Σa′,8) log

(
6|A|

δ

)
ε2(α)2 min(η2,1)

)
where δ ∈ (0, 1). Then,

Pr[∀a ∈ A : |ĉh,α(a)− cα(a)| ≤ ε] ≥ 1− δ.

Proof.

Assumption H.1 (L.A. et al. [34]). The random variable X is continuous with probability density
function f that satisfies the following condition: There exists universal constants η, δ′ ≥ 0 such that
f(x) ≥ η ∀x ∈ [vα − δ′

2 , vα + δ′

2 ], where vα = F−1(α).

Theorem H.2 (L.A. et al. [34]). Let (Xi)
n
i=1 be a sequence of i.i.d random variables. Let ĉn,α be

the empirical CVaR estimates of X computed from the above samples. Suppose that Xi, i = 1, . . . n
are σ−sub-Gaussian. Then for any ε ≥ 0, we have

Pr
[
|cn,α − cα| > ε

]
≤ 6 exp

(
−n(α)2 min(η2, 1)

8max(8, σ2)

)
. (30)

From the assumption, we know that the valuation vector v is a sub-Gaussian that satisfies the fol-
lowing condition: ∃K ≥ 0 s.t. E

[
exp(λ(v − v̄)⊺w))

]
≤ exp(λ

2K2v̄⊺Σv̄/2),∀λ ∈ R,∀w ∈ Rnm.

Further, we know that if X is a σ-sub-Gaussian random variable then cX is also sub-Gaussian with
variance proxy= cσ.

Using the above two properties, we get that the utilitarian welfare for a given allocation a is also a
sub-Gaussian with variance-proxy = K2a′

⊺
Σa′ where ∀G ∈ G,a′G = wGa

|G| .

For any allocation a, let ĉh,α(a) represent the empirical estimate of CVaR of utilitarian welfare and
ch,α(a) represent the corresponding true value.

Then, we can bound the error of approximating the CVaR of the utilitarian welfare for allocation a
as

Pr
[
|ĉM,α(a)− cα(a)| > ε

]
≤ 6 exp

(
−h(α)2min(η2, 1)
8max(8,K2a′⊺Σa′)

)
(31)

Furthermore, the approximation error for all allocations can be upper-bounded as

Pr
[
∀a ∈ A, |ĉh,α(a)− cα(a)| ≤ ε

]
≤ 1−

∑
a∈A

Pr
[
|ĉh,α(a)− cα(a)| > ε

]
(32)
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Combining (31) and (32) and setting h =

(
8max(maxa∈A a′⊺Σa′,8) log

(
6|A|

δ

)
ε2(α)2 min(η2,1)

)
, yields

Pr[∀a ∈ A, |ĉh,α(a)− cα(a)| ≤ ε] ≥ 1− δ . (33)

H.9 Proof of proposition 4.4

Proposition 4.4. If the valuation v is distributed as a multivariate Gaussian, i.e., v ∼ N (v̄,Σ),
then, the optimization problem in (9) simplifies to

max
a∈A

a⊺v̄ − ϕ(Φ−1(1− α))

α

√
a⊺Σa . (11)

Proof. The proof simply follows from the fact that for any normally distributed random variable
X ∼ N (µ, σ2) with mean µ ∈ R and σ ∈ R0+, CV aR[X] = µ− ϕ(Φ(α)−1)

1−α σ. If the valuation for
any group G is normally distributed as N (ΣG,ΣG), then the utility corresponding to that group has

mean = wG

|G| a
⊺
Gv̄G and variance =

(
wG

|G|

)2
a⊺GΣGaG. Therefore, for the utilitarian welfare objective

mean=
∑

G
wG

|G| a
⊺
Gv̄G and variance=

∑
G∈G

((
wG

|G|

)2
a⊺GΣGaG

)
. Substituting by these values in

the CVaR formulation for normal random variables, we get the stated results.

H.10 Linear Program for CVaR of Egalitarian Welfare

Proposition H.3. Given h samples of ṽ, i.e., v1,v2,v3, . . .vh sampled from Dv, the optimal allo-
cation for the problem in (12) can be approximately computed by solving

max
a∈A

max
y∈Rm

0+,b∈R

b− 1

α

M∑
j=1

yj


∀j ∈ [1, h], ∀G ∈ G : yj ≥ 1

h

(
b− 1

|G| · a
⊺
Gv

j
G

)
.

(34)

Proof. Consider the CVaR of egalitarian welfare optimization problem, given by

max
a∈A

CVaRα

[
min
G∈G

1

|G|
· a⊺GṽG

]
≡ max

w∈R,a∈A

w − 1

α
E

[(
w −min

G∈G

1

|G|
· a⊺GṽG

)
+

] .

(35)
Substituting the expectation in the above problem with the empirical expectation computed from the
h samples of the valuation matrices, we get

∼ max
w∈R,a∈A

w − 1

α

1

h

M∑
i=1

(
w −min

G∈G

1

|G|
· a⊺Gv

i
G

)
+

 (36)

Introducing slack variables y ∈ Rm, we can write the above problem as

max
a∈A

max
y∈Rh,b∈R

b− 1

α

m∑
j=1

yj


∀j ∈ [1, h] : yj ≥ 0

∀j ∈ [1, h] : yj ≥
1

h

(
b−min

G∈G

1

|G|
· a⊺Gv

j
G

)
.

(37)
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Without loss of generality, we can represent the above problem as

max
a∈A

max
y∈Rm,b∈R

b− 1

α

m∑
j=1

yj


∀j ∈ [1, h] : yj ≥ 0

∀j ∈ [1, h], G ∈ G : yj ≥
1

h

(
b− 1

|G|
· a⊺Gv

j
G

)
.

(38)

H.11 Proof of proposition C.1

Proposition C.1. If v1,v2, · · · ,vg are i.i.d and normally distributed, i.e., ∀G ∈ G, vG ∼
N (v̄G,ΣG), then, the optimization problem in (12) simplifies to

max
a∈A,t∈R

t

s.t. ∀G ∈ G :

(
1

|G| · a
⊺
Gv̄G − t

)2

≥

(
1

|G| ·
ϕ(Φ−1(1− α))

(α)

)2

a⊺
GΣGaG

∀G ∈ G :

(
1

|G| · a
⊺
Gv̄G − t

)
≥ 0 .

(13)

Proof. The proof simply follows from the fact that for any normally distributed random variable
X ∼ N (µ, σ2) with mean µ ∈ R and σ ∈ R0+, CV aR[X] = µ − ϕ(Φ(1−α)−1)

α σ. If the valuation
for any group G is normally distributed as N (ΣG,ΣG), then the utility corresponding to that group

has mean = wG

|G| a
⊺
Gv̄G and variance =

(
wG

|G|

)2
a⊺GΣGaG. Substituting these values in (34), we get

max
a∈A

min
G∈G

(
wG

|G|
· a⊺Gv̄G

)
− wG

|G|
· ϕ(Φ

−1(α))

(1− α)

√∑
G∈G

a⊺GΣGaG . (39)

Introducing a slack variable t to represent a lower bound on the group utilities and rearranging the
terms we get, we get

max
a∈A,t∈R

t

∀G ∈ G :

(
1

|G|
· a⊺Gv̄G − t

)
≥

(
1

|G|
· ϕ(Φ

−1(α))

(1− α)

)√
a⊺GΣGaG

∀G ∈ G :

(
1

|G|
· a⊺Gv̄G − t

)
≥ 0 .

(40)

Squaring the quadratic constraint on both sides and adding a constraint to ensure that the non-
negativity of the L.H.S of each each group constraint in (40) is retained after squaring, gives us the
final result.

I Details of Code and Machine Specifications

I.1 Code

We have provided the code in the supplementary materials.

I.1.1 Machine Specifications and Computational Time

All experiments were run on Xeon E5-2680 v4 @ 2.40GHz machines with 128GB RAM with each
experiment consuming at most 32 GB of memory. We ran 1500 experiments in total and each
experiment took 3-4 hours.
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