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ABSTRACT

DATA DRIVEN EXPERT ASSIGNMENT

FEBRUARY 2025

JUSTIN PAYAN

B.A., B.Sc., UNIVERSITY OF GEORGIA

M.Sc., UNIVERSITY OF GEORGIA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Yair Zick

The modern knowledge economy relies on expertise. In important technocratic tasks such

as scientific peer review and community question answering, knowledge workers can only fulfill

requests they have the expertise, interest, and availability to complete. We develop multiple

novel approaches to assign experts to requests, addressing questions of fairness, scalability,

assignment quality, and robustness to uncertainty. We use peer review as the primary case

study, though Chapter 3 highlights the domain of community question answering. Our

algorithms can be applied to other domains where resource-constrained experts are assigned

to complete complex requests, such as crowd-sourced editing of knowledge repositories or

corporate staff assignment.

Expert assignments must be both fair and welfare efficient, so that all requests receive a

reasonably well-qualified set of experts. We first present a set of simple mechanisms that

vii



fairly distribute expertise across requests, with welfare guarantees. Our algorithms, Greedy

Expert Round Robin and FairSequence, assign experts in such a way that no request “envies”

another request’s assigned experts.

Although fairness and welfare criteria ensure evenly-distributed, high quality expertise,

they both depend on the method of quantifying expert performance. In automated reviewer

assignment systems, existing methods for estimating the benefits of assigning each reviewer

to each paper can be noisy and ineffective. We take a data-driven perspective on the expert

assignment problem, demonstrating how to more accurately estimate the benefits of assigning

experts to requests. We train a variety of models to predict answer quality on StackExchange,

then compare the results when using these models to produce constrained assignments of

users to questions. This study demonstrates the benefits of fully predictive expert assignment.

No matter how accurate our predictive model, we always are uncertain when we assign

experts to requests. Distribution shift can cause our models to make errors, or experts may

be unable to perform due to unforeseen circumstances. We discuss two main solutions to

hedge against the worst outcomes. The robust optimization framework optimizes over a

region containing the true matching scores with high probability. The stochastic optimization

framework assigns experts using a percentile criterion over the assignment objective. We study

both the robust and stochastic approaches for utilitarian and egalitarian welfare objectives,

and we detail applications in reviewer assignment and community question answering.

Expert assignment is a rich problem, which needs to be addressed from both a data

analysis and algorithmic lens. Our work improves the end-to-end expert assignment pipeline,

which will result in less wasted time and greater productivity for knowledge workers.
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CHAPTER 1

INTRODUCTION

Peer review is a fundamental institution for evaluating scientific knowledge. Over the 20th

century, the scientific profession has grown significantly, and the institution of peer review has

struggled with the increased scale. Modern computer science conferences receive thousands

of submissions, matched to committees of similar size. At this scale, it is challenging to

ensure reviewers possess the proper expertise for their assigned papers. In large conferences

such as NeurIPS/ICML/AAAI/IJCAI, reviewer assignment is largely automated through

systems such as the Toronto Paper Matching System (TPMS) [38], Microsoft CMT [137],

or OpenReview [119]. Inappropriately assigned reviewers may lead to failures: misinformed

decisions, reviewer disinterest, and a general mistrust of the peer-review process.

Constrained Expert Assignment. Reviewer assignment is just one example of the

constrained expert assignment problem. In this problem, experts with limited resources are

assigned to complete requests requiring specific technical knowledge or skills. Experts without

the requisite skills for a request may fail to produce a satisfactory response, so we aim to

assign qualified experts to each request. We cannot route all requests to the top experts,

since there may be a large number of requests and each expert can complete a limited number

of them. In many expert assignment domains, a massive number of requests needs to be

solved in a short time period, necessitating algorithmic routing of experts to requests. Other

examples of large-scale constrained expert assignment include question routing for community

question answering [175, 181], employee shift or project assignment [94, 130], recommending
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editors in collaborative wiki editing [89, 136, 172], peer grading in MOOCs [63, 149], assigning

teachers to courses [166], and selecting software engineers to fix bugs [178].

Desiderata for Expert Assignment. We study the accuracy, fairness, robustness, and

scalability of expert assignment algorithms. Overall assignment accuracy maintains quality

standards for the conferences, question-answering sites, community-written encyclopedias, etc

that rely on pools of expert contributors. However, it is imperative that we do not sacrifice

quality on some requests to obtain higher overall matching scores. In peer review, papers

which receive poorly matched reviewers may be unfairly rejected or receive unhelpful feedback,

causing the authors real harm [32, 152, 153]. Similar problems can occur in any task requiring

expertise; when the experts recommended for or assigned to a request are ill-fitting, they

are liable to produce incorrect or unhelpful responses. We thus desire algorithms which are

globally accurate and fair. Uncertainty in affinity score computation is another major source

of error in assignment [100]. When we assign an expert to a request, we are interested in

ensuring the quality of the future response, which is fundamentally noisy. In peer review,

conferences often must assign reviewers to papers within a timespan of several days [41].

To enable interactive workflows at that timescale, we require algorithms that can scale

to thousands of experts and requests with minimal computational overhead. We present

algorithms and analyses that address all of these concerns.

Speed, Fairness, and Welfare-Efficiency. In Chapter 2, we present a variant on the

round-robin procedure, Expert Round Robin (ERR), that satisfies approximate envy-freeness

[27, 103] for expert assignment. ERR assigns the same number of experts to each request,

but some domains require variable-sized assignments. We therefore also study a family of

weighted picking sequences which satisfy a commonly-used approximate weighted envy-freeness

constraint [35]. This constraint generalizes envy-freeness to settings where agents have unequal

item demands, ensuring that agents are approximately envy-free after normalizing by their
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demands. Finally, we present a weighted picking sequence mechanism called FairSequence

that targets the weighted envy-freeness criterion to offer fairness in a more general setting.

Using data from three conferences, we show that FairSequence runs an order of magnitude

faster and provides approximate envy-freeness guarantees that are violated by existing

approaches. Its simple design makes it flexible to new assignment constraints. FairSequence

is available in the OpenReview conference management platform [119], and has been used by

at least 14 venues to date (source: personal correspondence with OpenReview).

Computing Valuations. The remainder of the thesis studies valuations, which are the

basis of the objectives in expert assignment. In automated reviewer assignment, conferences

typically construct affinity scores that reflect reviewer expertise and interest via four main

sources of information. These sources are (a) subject-area matching (SAM) scores or keyword-

based matching, where reviewer-provided areas of expertise are compared against keywords

submitted by paper authors, (b) textual similarity scores, often implemented by the well-known

Toronto Paper Matching System (TPMS) [38] or ACL scores [117], (c) bidding, where reviewers

express their explicit ability and desire to review papers, and finally (d) recommendations,

through which program committee members may suggest reviewers for papers. The overall

affinity scores are typically computed as a linear combination of these four scores. CMT

implements their affinity scores this way [138], as does OpenReview [121]. Recent conferences

such as AAAI 2021 took a similar approach, linearly combining TPMS scores, ACL scores,

and SAM scores, and raising the sum to some power based on the reviewer bids [100].

Uncertainty in Valuations. Each of these common affinity score components can be

missing or inaccurate. State-of-the-art document similarity measures disagree with expert

judgments up to 43% of the time [159], and nearly 40% of TPMS scores were completely

missing in AAAI 2021 [100]. Although the AAAI 2021 organizers do not explain why so many

TPMS scores are missing, missing scores occur for several reasons, including reviewers opting
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out of the system or providing insufficient or empty publication records. Between 5% and 15%

of papers in major AI conferences receive fewer than three positive bids, but there is evidence

that many missing bids would be positive if collected [60, 112, 141]. Although no systematic

study has been performed on keyword-based similarity scores, keyword matching accuracy

depends on authors and reviewers using consistent terminology, and subtleties are invariably

lost in the process. Even reviewers directly suggested by knowledgeable editors or the paper

authors have been shown to perform surprisingly poorly on average, as measured by third-

party annotators via the Review Quality Index [144, 171], showing that recommendations

can be noisy as well.

Improving Valuation Predictions. In Chapter 3, we investigate more comprehensive

sets of features for building predictive models of expert performance. Without access to

comprehensive data sources for peer review, we take the community question answering

site StackExchange as our primary case study. In constrained expert assignment tasks,

we would ideally assign experts to tasks so as to optimize overall task performance, but

expert performance is unknown prior to making the assignment. We propose predicting these

performance metrics and assigning using the predictions. Using an expert-assignment task

derived from StackExchange, we show that explicitly predicting expert performance has a

large impact on assignment decisions and can improve overall welfare. We demonstrate this

claim using both theoretical bounds on statistical generalization guarantees and automated

metrics of assignment quality. This work highlights the effectiveness of predictive assignment,

and the need to collect high quality datasets linking pre- and post-allocation measures in

other important expert assignment tasks such as peer review.

Optimizing over Uncertain Valuations. In Chapter 4, we address the uncertainty

inherent in expert assignment. To our knowledge, every reviewer assignment system still

relies on affinity score estimates, but does not directly account for the fact that these scores
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are noisy estimates of assignment quality. Our work addresses this fundamental gap. We

investigate a generalized notion of affinity score, where system designers can implement

affinity using any measure of fit between experts and requests. These measures may or may

not be fully observable; for example, conference organizers may estimate unknown bids as

part of affinity computation, or a community question answering site could use a predictive

model like the one described in Chapter 3. Using these predictors, we apply robust and

stochastic optimization methods to either maximize the minimum welfare objective over an

uncertainty set, or to maximize statistics of the distribution over welfare.

1.1 Related Work

The generalized expert assignment problem has deep roots in the general assignment

problem [30]. A few papers have investigated the expert assignment problem as a general

construct, originally formulating it as a linear assignment problem (estimate match scores, then

maximize the sum of scores subject to constraints) [166]. Follow-up work incorporates other

concerns like online matching settings [75], team dynamics [4], or incorporating predictions

of task completion rates [134].

Although data-driven expert assignment has multiple variants and many applications, we

focus on two primary applications in this thesis – automated reviewer assignment for peer

reviewed conferences, and identifying expert users on community question answering sites.

We highlight papers in each of these areas. The communities working on these problems are

typically distinct. However, there are many similarities between the problems, and insights

often translate across domains.

We also provide brief discussions of solutions we apply to solve the expert assignment

problem; fair allocation of indivisible items, and robust and stochastic optimization algorithms.
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1.1.1 Automated Reviewer Assignment

Computer scientists have been automating conference reviewer assignment for over three

decades [58]. Aksoy et al. [2], Zhao and Zhang [184] provide comprehensive overviews of the

problem; we focus on the most recent and relevant approaches here.

Most recent approaches model the problem as a mixed-integer linear program maximizing

affinity between reviewers and papers; the Toronto Paper Matching System (TPMS) is the most

notable work with this formulation [38, 39], though there are others [101, 167]. The affinity

typically models alignment between reviewer expertise and paper topics, but can incorporate

other relevant notions like reviewer bids, conflicts of interest, and author suggestions [100,

115, 141]. Affinities are generally considered a good proxy for value at both an individual and

collective level, since higher-affinity reviewers will typically be more qualified for and interested

in a paper, resulting in more detailed and accurate reviews. Affinity scores are universally

available in systems like TPMS, Microsoft CMT, or OpenReview, and it is standard practice to

use these affinity scores to compute welfare and fairness measures [44, 80, 91, 100, 148, 157].

Chapter 2 focuses heavily on fairness in reviewer assignment. A number of prior works

consider fairness objectives in peer review, though none of them consider envy-freeness up

to one item. Hartvigsen et al. [74] ensure that at least one qualified reviewer is assigned to

each paper. A few recent approaches approximately maximize the minimum paper score, or

maximize the sum of scores subject to a minimum individual score threshold [91, 118, 157].

Aziz et al. [9] present a reviewer assignment algorithm that satisfies the core, ensuring that no

group of papers can deviate without reducing their total welfare. A number of works study

fair assignment of papers to reviewers, allowing reviewers to express preferences over papers

by bidding [8, 65, 102, 165]. This setting aims to be fair to the reviewers rather than the

papers. Other works target reviewer assignments with properties besides fairness or efficiency;

Long et al. [106] avoid conflicts of interest, while Kou et al. [92] and Ahmed et al. [1] assign

sets of reviewers with diverse interests and full coverage of the papers’ topics.
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Chapters 3 and 4 focus on how to assign experts to requests when the affinities between

experts and requests are not known. This work is echoed in prior efforts for reviewer

assignment. Some prior work attempts to predict missing bids for reviewer assignment, and

to use these predicted bids to compute and evaluate assignments [42, 139]. Charlin et al.

[40] also evaluate reviewer assignments under a predictive model imputing missing relevance

scores. Although these works study the quality of assignment under a predictive model,

none assigns using predictions of final task completion quality (we discuss this strategy in

Chapter 3, and show in detail how to optimize under these predictive scores in Chapter 4).

Saveski et al. [143] develop a model for counterfactual evaluation of alternative reviewer

assignments on past conferences. They measure review quality by the reviewers’ self-reported

expertise and confidence measures, and demonstrate that textual similarity measures (like the

Toronto Paper Matching System [38, 39]) are more directly relevant to assigning confident

and (self-reported) expert reviewers than bids and keywords. However, existing similarity

score computation methods still make many errors [159]. Taken together, the current findings

in the literature demonstrate that we cannot fully trust existing affinity score computation

methods as predictors of match quality. These works have similar motivation to our own;

our work proposes a holistic, end-to-end solution to the problem of noisy affinity scores

by predicting and optimizing for metrics of review quality. Other works use modern NLP

techniques to improve document-based similarity scores [117], encourage reviewers to bid

on underbid papers [60, 112, 141], or disincentivize strategic bidding behavior [80, 81, 82].

Although these approaches reduce uncertainty, they do not explicitly account for uncertainty.

1.1.2 Community Question Answering

Many existing works learn to recommend users on community question answering (CQA)

forums like StackExchange, Quora, and Yahoo Answers. Sun et al. [163, 164] predict the

future user-voted score when assigning a user to a given question. In Chapter 3 we target
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the same outcome variable, but we additionally contribute rigorous feature importance

analysis, updated NLP techniques, and examination through the lens of constrained expert

assignment (rather than providing isolated, per-question user recommendation). Liu et al.

[104], Tondulkar et al. [169] predict which user’s answer will be marked as accepted by the

original question poster. Yang et al. [180] recommend users to questions with topics that

interest them and in which they have expertise, irrespective of the user’s competence. Qian

et al. [134] study the setting where experts are sent requests for work, and they maximize the

topical similarity of recommended experts as well as the acceptance rate of the invitations.

While much attention has been paid to expert recommendation and prediction of answer

quality in CQA forums, none of these works have addressed the constraints of the experts

being assigned, or trade-offs among the many valid measures of answer quality in CQA. Users

can only answer a small number of questions at a time, so we must consider their limited

time when recommending questions if we want all questions answered.

A particularly thorny aspect of predictive expert assignment is identifying metrics for

answer quality. Zhu et al. [186] asked both users and subject-matter experts to give a list

of important criteria for evaluating answer quality, identifying 13 major criteria for answer

quality measurement. They also asked experts to label answers as satisfying or not satisfying

each criterion, and finally to rate each answer as good or bad overall. These and other similar

criteria have been used or rediscovered in other important CQA studies [62, 147]. We employ

them as features in our predictive model and use them for evaluation in Chapter 3.

1.1.3 Fair Allocation of Indivisible Items

The theory of fair allocation of indivisible items is quite relevant to expert assignment

problems. We use techniques from this literature in Chapter 2.

Aziz et al. [8] present an algorithm which attempts to output a W -satisfying EF1 allocation

for constraint(s) W . When W includes a minimum threshold for welfare, their approach is
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somewhat similar to our GERR and FairSequence algorithms. However, rather than greedily

maximizing welfare by letting the locally optimal agent pick, they let any agent pick as

long as W can still be achieved. Biswas and Barman [21] present a modification of the

round-robin mechanism that assigns a complete EF1 allocation when items are partitioned

into categories and agents can receive a limited number of items from each category, but the

overall number of items per agent is unlimited. Dror et al. [56] study fair allocation under

matroid constraints, but only for identical or binary valuations, less than four agents, or a

single uniform matroid constraint. Caragiannis and Rathi [33] show that greedily selecting

agents is a 2-approximation for the maximum welfare picking sequence when agents can

choose at most one item.

Weighted envy-freeness up to one item, or WEF1, is the main fairness notion considered in

Chapter 2. It was one of the first fairness notions studied for agents with unequal entitlements

[16]. Much recent work in fair allocation has focused on this and other guarantees to agents

with unequal entitlements [11, 37, 114, 161, 161, 162]. Much of this work focuses on the

setting of binary valuations or binary submodular valuations. Of particular relevance is recent

work recommending usage of picking sequences for weighted fair division [36].

Our application of submodular optimization to optimizing orders for round-robin is

inspired by previous work on fair allocation with submodular valuations [10, 12, 16, 174].

Prior work has also studied maximization of approximately submodular functions, though

none has combined matroid constraints with a definition of approximate submodularity

similar to ours [49, 69].

Existing work shows the hardness of maximizing welfare for EF1 and picking sequence

allocations. Aziz et al. [8] show maximizing welfare subject to EF1 is NP-hard, and Barman

et al. [13] show the same problem is not even polynomial-time approximable. Aziz et al. [7]

show that the problem of determining if a given welfare is possible under a picking sequence

of a certain class is NP-complete for some classes of picking sequences (but not round-robin).
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Finally, our FairSequence algorithm uses a subroutine inspired by the exchange graph

routine from the Yankee Swap algorithm [45, 46, 173, 174].

1.1.4 Robust and Stochastic Optimization

In Chapter 4, we study robust and stochastic optimization of various welfare functions for

expert assignment problems.

Gorissen et al. [70] provide an excellent overview of optimization under uncertainty,

including techniques used in this work, while Ben-Tal et al. [15], Bertsimas et al. [18]

offer additional background on robust optimization. A standard approach in this regime

is analyzing the dual of the uncertainty, we take this approach frequently in Chapter 4.

Stochastic optimization has a wide literature; the books by Birge and Louveaux [20], Levy

et al. [99], Prékopa [131], Ruszczyński and Shapiro [142] present wide-ranging introductions

to the topic. One of the primary concepts in stochastic optimization is conditional value

at risk (CVaR), which can often be approximately optimized by sampling and optimizing

over an objective composing the different samples [95, 105, 140]. We take this approach in

Chapter 4 as well.

Chapter 4 introduces a framework to solve expert assignment problems. We discuss

a naive projected sub-gradient ascent method which solves a quadratic program over a

large number of iterations, making it somewhat inefficient. This algorithm is based on an

iterative supergradient-ascent approach; similar techniques have been applied to supervised

learning with unknown labels [110] and fair learning with unknown group identities [55].

Later in Chapter 4 we demonstrate the inefficiency of this method and present more efficient

algorithms, though the method applies to more general settings than the more efficient

algorithms. Fair machine learning algorithms [43, 55, 57, 116, 183] often employ similar

adversarial optimization techniques over an uncertainty set in a machine learning context.
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Some existing work applies stochastic or robust optimization to fair division problems. A

line of work studies the minimax regret objective in combinatorial optimization problems,

such as constrained resource allocation [5, 22, 23, 93]. This work does not explicitly consider

multi-matching problems like the expert assignment problem, nor does it address the robust

egalitarian welfare problem. Pujol et al. [133] study fair division problems with parameters

noised for differential privacy, showing that the noise can cause unfair allocations; they

propose a Monte Carlo approach to mitigate the unfairness with high probability. Peters

et al. [129] study envy-free rent division under probabilistic uncertainty. A central mechanism

divides rooms and sets room prices to minimize envy. We study a setting without money,

both utilitarian and egalitarian objectives, and robust optimization in addition to stochastic

optimization. Other fair allocation research has studied the case where agent demand or

item availability are uncertain but preferences are known [3, 29, 54, 71]. In our case demand

and availability are known but preferences are not. Devic et al. [52] consider fair two-sided

matching where the fairness constraint is defined with respect to unknown parameters; we

assume knowledge of the parameters that define the fairness constraint (i.e., group identities).

1.2 Preliminaries

We first define the notation that will be used throughout the paper. We will use non-bold

capital letters to denote sets, bold capital letters to denote matrices, and bold lowercase letters

to denote vectors. For any two sets X and Y , let Y X denote the set of all functions f : X 7→ Y .

Given a matrix represented by a bold uppercase letter, e.g., X ∈ Rn×m, we will use the

convention that the same letter in bold lowercase, e.g., x ∈ Rnm, denotes the row-major

vectorization of the matrix such that Xi,j = xim+j. Given a matrix X ∈ Rn×m and a set

S ⊆ {1, . . . , n}, let X|S ∈ R|S|×m denote the matrix derived by taking the rows corresponding

to S from X in sorted order, and let x|S ∈ R|S|m denote the row-major vectorization of X|S .
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Example 1.2.1. Given the set S = {1, 3}, and the matrix X and its vectorization x

X =


1 2

3 4

5 6

⇒ x =

(
1 2 3 4 5 6

)
,

we have that

X|S =

1 2

5 6

⇒ x|S =
(
1 2 5 6

)
.

To simplify notation, given a set X and an element y, we often write X + y and X − y

instead of X ∪ {y} and X \ {y}. Given vectors x,y ⊆ Rn and real number c ∈ R, let x ⪰ c

denote that xj ≥ c for all j ∈ {1, . . . , n}, and let x ⪰ y denote that x−y ⪰ 0. Given matrices

X,Y ⊆ Rn×m and real number c ∈ R, let X ⪰ c denote that Xi,j ≥ c for all i ∈ {1, . . . , n} and

j ∈ {1, . . . ,m}, and let X ⪰ Y denote that X−Y ⪰ 0. The ⪯ operator is defined analogously.

We will also use I(n×m)(i, g) ∈ {0, 1}n×m to denote the indicator matrix with I(n×m)(i, g)i,g = 1

and I(n×m)(i, g)i′,g′ = 0 if i′ ≠ i or g′ ̸= g. We will omit the (n ×m) and just write I(i, g)

when n and m are obvious. For matrices X,Y ∈ Rn×m, let ∥X∥F
.
=
√∑n

i=1

∑m
j=1X

2
i,j

denote the Frobenius norm of X and ⟨X,Y⟩F
.
=
∑n

i=1

∑m
j=1Xi,jYi,j denote the Frobenius

matrix product of X and Y. Let X⊙Y denote the Hadamard product of X and Y, where

(X⊙Y)i,j = Xi,jYi,j.

1.2.1 Expert Assignment Problem

We assign experts M = {g1, . . . gm} to requests N = {1, . . . , n}, optimizing welfare and

fairness measures for the requests. We assume that N and M come from the universes N and
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M, such that N ⊆ N and M ⊆M. Some of the theoretical guarantees in this dissertation

require us to model probability distributions over N ,M, or the joint space N ×M.

Let Mn denote the set of all ordered lists of subsets of M . Given an allocation A =

(A1, A2, . . . An) ∈ Mn, each Ai ⊆ M is the bundle of experts assigned to request i. Not all

assignments are allowed; for instance, in reviewer assignment we typically forbid reviewers

from reviewing their own papers. We therefore often enforce constraints through some

constraint set Z ⊆ Mn; we require A ∈ Z. Typical constraints include lower and upper

limits for the number of experts per request and the number of requests per expert, as

well as individual constraints limiting the assignment of specific pairs. Formally, define

vectors kN ,kN ∈ Nn and kM ,kM ∈ Nm and a constraint matrix C ∈ Nn×m. Typically,

Ci,j ≤ 1 for all i ∈ N and j ∈ {1, . . .m}, and Ci,j = 0 when there is a conflict of interest

between i and j. Under these basic constraints, the space of all allocations is defined as

Z .
= {A ∈Mn | ∀i;kN

i ≤ |Ai| ≤ kN
i ,∀j;kM

j ≤
∑n

i=1|Ai∩{gj}| ≤ kM
j ,∀i, j; |Ai∩{gj}| ≤ Ci,j}.

Other constraints may sometimes be incorporated into Z. For example, we may use pairwise

constraints on certain pairs of experts g, g′ requiring ∀i; |Ai∩{g}|+ |Ai∩{g′}| ≤ 1; in reviewer

assignment, these pairwise constraints can forbid assignment of reviewers who bid on each

others’ papers (possible evidence of collusion [80]) or implement geographic and institutional

diversity [100]. Each request i has a valuation function over sets of experts vi : 2M 7→ R, which

defines the suitability of the set of experts for the request. For simplicity, we will typically

write vi(g) instead of vi({g}) when referring to the valuation function applied to a singleton

set. We assume valuations are additive, i.e., for any set X ⊆M , vi(X) =
∑

g∈X vi(g).

An allocation A can also be represented as a matrix A ∈ {0, 1}n×m, where Ai,j = 1 if and

only if gj ∈ Ai. We will use Ai to denote the ith row of A. This formalization is isomorphic

to the set-based formalization given earlier. Because valuations are additive, we can write

the valuations using a valuation matrix V ∈ Rn×m, where Vi,j = vi(gj).
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For deterministic allocations, the set-based notation and the matrix-based notation

represent structures that have natural isomorphisms. However, the matrix notation allows us

to more easily represent fractional allocations. Using the matrix notation, we also define the

space of all fractional allocations Z̃ ⊆ [0, 1]n×m. Given an allocation Ã ∈ Z̃, Ãi,j indicates

the probability of assigning expert gj to request i. Z̃ is defined by the same constraints as Z.

The theory and algorithms of Chapter 2 are more naturally expressed using the set-based

notation, while Chapters 3 and 4 are more naturally expressed using matrix notation. Despite

the change in notation, we refer to the same underlying objects throughout the thesis.

Example 1.2.2. Consider an expert assignment instance with requests N = {1, 2},

and M = {g1, g2, g3}. Suppose the requests and experts have lower and upper limits

kN = kN =

(
2 1

)
kM = kM =

(
1 1 1

)
.

Consider allocation A and valuation V as

A =

0 1 1

1 0 0

 V =

0 2 3

0 1 2

 .

Then we have A ∈ Z, A1 = {g2, g3}, and v1(A1) = 5.

1.2.2 Models of Valuations

In the previous section, we assume valuations are known with certainty. Although this is

a simplifying assumption commonly made in the literature (and we make it in Chapter 2),

much of this thesis concerns settings where valuations are estimated with some uncertainty.

In Chapters 3 and 4 we consider both probabilistic and robust models of V. Under the

probabilistic model, we assume we have access to a probability distribution DV over the random
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variable V ∈ Rn×m. In the robust model, we instead assume access to an (ε, δ) uncertainty

set V , defined as follows:

Definition 1.2.3 ((ε, δ) Uncertainty Set). Suppose V∗ ∈ Rn×m is the true valuation matrix.

An (ε, δ) uncertainty set V obeys Pr
(
inf
V∈V
∥V−V∗∥1 > ε

)
< δ, i.e., it probably contains some

V that is ε-close to V∗.

These two models are sometimes, but not always, connected. We will further explore

these in Chapter 4, but for now consider a simple example for the sake of illustration.

Example 1.2.4. Consider an expert assignment instance with n requests and m experts.

Suppose we have a subset of valuations already labeled, and estimate the remaining

valuations using Gaussian process matrix factorization [97]. This approach could be

used in reviewer assignment, where reviewers often bid on a subset of papers [60, 112].

This model outputs a mean vector µ ∈ Rnm and covariance matrix Σ ∈ Rnm×nm. If we

assume the model generalizes perfectly, and there is no model misspecification, then

we can take Normal(µ,Σ) to be our probability distribution DV. In addition,

V = {v | (v − µ)⊺Σ−1(v − µ) ≤ χ2
mn(1− δ)}

is a (0, δ) uncertainty set.

1.2.3 Allocation Desiderata

The utilitarian social welfare (also called utilitarian welfare or USW) of an allocation Z

under valuation V is the average of the requests’ valuations under that allocation.

USW(A,V) =
1

n

n∑
i=1

m∑
j=1

Vi,jAi,j =
1

n

n∑
i=1

vi(Ai).
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USW is a natural objective in the context of reviewer assignment, and has been used in

many prior works on this topic [38, 42, 44, 91, 124, 157]. Optimizing for USW alone can lead

to unfair outcomes. This unfairness can be mitigated by applying fairness constraints or by

modifying the objective.

In Chapter 2 we discuss a fairness constraint based on the notion of envy-freeness. An

allocation A is considered envy-free if for all pairs of requests i and i′, vi(Ai) ≥ vi(Ai′) This

criterion is not achievable in general (consider the example of two requests and one expert

gj whose upper bound is kM
j = 1), so we relax the criterion. An allocation A is envy-free

up to one item (EF1) if for all pairs of requests i and i′, either vi(Ai) ≥ vi(Ai′) or there is

some gj′ such that gj′ ∈ Ai′ and vi(Ai) ≥ vi(Ai′ − gj′). EF1 should only be used when all

requests have the same upper bounds, kN
i = kN

i′ for all i, i′ ∈ N . When requests have distinct

upper bounds, we apply the fairness notion of weighted envy-freeness [35]. An allocation A

is considered weighted envy-free if for all pairs of requests i and i′, vi(Ai)/k
N
i ≥ vi(Ai′)/k

N
i′ .

Analogously, an allocation A is weighted envy-free up to one item (WEF1) if for all pairs of

requests i and i′, either vi(Ai)/k
N
i ≥ vi(Ai′)/k

N
i′ , or there is an expert gj′ such that gj′ ∈ Ai′

and vi(Ai)/k
N
i ≥ vi(Ai′ − gj′)/kN

i′ .

We may also consider the sum of envy as a metric for evaluation, defined by

∑
i∈N

∑
i′∈N

max{(vi(Ai′)− vi(Ai)), 0}.

Example 1.2.5. Consider an expert assignment instance with requests N = {1, 2}

and experts M = {g1, g2, g3, g4}, where kN
1 = 2 and kN

2 = 3. Given the allocation A

and valuation V as

16



A =

1 1 0 0

1 0 1 1

 V =

5 4 8 8

9 6 1 8

 ,

v1(A1) = 9, v1(A2) = 21, v2(A2) = 18, and v2(A1) = 15. The sum of envy is 12. As

v1(A1) < v1(A2), request 1 envies request 2. This envy cannot be alleviated by removing

one item from A2, so A does not satisfy EF1. However, since v1(A1)/2 > v1(A2−g3)/3,

A satisfies the WEF1 criterion.

Another way to treat fairness is to modify the objective function. The canonical fair

objective function is the egalitarian welfare or ESW,

ESW(A,V) = min
i∈N

m∑
j=1

Vi,jAi,j = min
i∈N

vi(Ai).

This objective has some history in reviewer assignment; algorithms approximately optimizing

egalitarian welfare have been implemented in OpenReview [91], and used for large conferences

like ICML [157].

In settings where we cannot access the exact valuation scores V but instead have a

probability distribution DV or an uncertainty set V, ESW is too difficult to achieve. In

Chapter 4, we instead consider fairness through the lens of group egalitarian welfare. Given a

partition of the agents into groups G = {G1, . . . , Gκ}, the group egalitarian welfare or GESW

is defined as

GESW(A,V) = min
G∈G

USW(A|G ,V|G ).

Another commonly-studied objective function is the Gini coefficient, which computes

the normalized mean absolute difference in outcomes for all pairs of requests [66]. In expert
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assignment, the Gini coefficient is computed as

Gini(A,V) =
(
2n2USW(A,V)

)−1
∑
i∈N

∑
i′∈N

|vi(Ai)− vi′(Ai′)| .

The Gini coefficient is used to capture overall inequality. Although we will not optimize for

it, we will use it as an additional metric in some of our experiments.

Example 1.2.6. Consider an expert assignment instance with four requests and four

experts. Suppose the groups are G1 = {1, 2} and G2 = {3, 4}. If we select an assignment

A with v1(A1) = 2, v2(A2) = 6, v3(A3) = 9, v4(A4) = 7, then we obtain the following

welfare metrics:

1. The utilitarian social welfare is USW(A,V) = 1
4

4∑
i=1

vi(Ai) = 6.

2. The egalitarian social welfare is the utility of the least well-off request, which is 2.

3. The utilitarian social welfare of group 1 is USW(A|G1 ,V|G1 ) = 4.

4. The utilitarian social welfare of group 2 is USW(A|G2 ,V|G2 ) = 8.

5. The group egalitarian social welfare, or GESW(A,V), is the utilitarian social welfare

of the least well-off group, which is 4.

6. The Gini coefficient is Gini(A,V) = 2
2·16·6(4 + 7 + 5 + 3 + 1 + 2) = 11

48
.

In all tables in this thesis, we will use the up and down arrows (↑, ↓) to indicate when

higher values or lower values of a metric are preferable, ceteris paribus. For example, USW

will be denoted as USW(↑), and Gini will be denoted as Gini(↓).
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CHAPTER 2

FAST AND FAIR EXPERT ASSIGNMENT WITH
FAIRSEQUENCE

In this chapter, we consider the expert assignment problem through the lens of fair

allocation. We present fast, fair, flexible, and welfare efficient algorithms for assigning experts

to requests. Our approaches extend picking sequence mechanisms, standard tools from the

fair allocation literature to ensure (weighted) envy-freeness up to one item, or (W)EF1. These

mechanisms impose a picking order on the requests, and then assign experts to requests in

that imposed order. The order is chosen to satisfy EF1 or WEF1. However, fairness can come

at the cost of decreased welfare. To overcome this challenge, we carefully select approximately

optimal picking sequence orders. Applying the notion of γ-weak submodularity, we show our

Greedy Expert Round Robin (GERR) approach is EF1 and yields a (1 + γ)-approximation

to the maximum welfare attainable by a round-robin picking sequence mechanism under

any order. We present a weighted picking sequence mechanism called FairSequence that

targets the WEF1 criterion to offer fairness in a more general setting. Using data from three

conferences, we show that FairSequence runs an order of magnitude faster and provides

approximate envy-freeness guarantees that are violated by existing reviewer assignment

approaches. FairSequence is available in the OpenReview conference management platform

[119], giving conference organizers access to faster reviewer assignment with high welfare and

envy-freeness guarantees.
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2.1 Achieving (W)EF1 with High Welfare Picking Sequences

Maximizing welfare subject to EF1 is NP-hard and is not approximable in polynomial

time [13]. Thus, we explore methods that produce EF1 allocations with good empirical

performance and partial welfare guarantees using picking sequence mechanisms. In standard

fair allocation settings, the well-known round-robin (RR) mechanism produces EF1 allocations

by setting an order of agents, and letting them select one item at a time. Due to the

constraints of the expert assignment problem, round-robin is not EF1 for expert assignment.

We thus present a variation on classic RR, which we term Expert Round Robin (ERR).

Round-robin mechanisms assign the same number of experts to each request, but sometimes

requests require variable-sized assignments. For instance, two-phase conference reviewing

processes often need to assign a variable numbers of reviewers in the second phase when

some reviewers failed to respond in the first phase. We therefore also study a family of

weighted picking sequences which satisfy the Weighted EF1 constraint (WEF1) [35]. Our

algorithms, Weighted Expert Picking (WEP) and FairSequence, follow ERR by applying a

standard weighted picking sequence with some added steps to accommodate the generalized

constraints of expert assignment.

While picking sequence mechanisms are known to satisfy fairness constraints, their welfare

guarantees are highly dependent on the order in which players pick items. For example,

consider a stylized setting where there are two requests (i and j) and two experts (g1 and

g2): request i has an affinity score of 5 for both experts, while request j has a score of 10 for

g1 and 0 for g2. A round-robin mechanism that assigns to i first might assign g1 to i, leaving

j with g2. Assigning to j first results in a much better outcome, without compromising on

fairness. It is generally difficult to identify optimal picking sequences [6, 7, 24, 84]. We ask

the question: Can we identify approximately optimal orders?
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2.1.1 Chapter Overview

We run a combinatorial search for orders of requests that yield high efficiency allocations

for picking-sequence mechanisms like ERR and WEP. To this end, we examine the problem of

finding an optimal assignment order via the lens of submodular optimization. We optimize a

function on partial picking sequences, which varies according to the welfare of the allocation

resulting from the picking sequence. This function is not submodular in general, but we

can capture its distance from submodularity via a variable γ. Our main theoretical result

(Theorem 2.4.5), which is of independent interest to the fair division community, shows that a

simple greedy approach maximizes this function up to a factor of 1+γ. We call this approach

Greedy Expert Round Robin (GERR). The approach can also be applied to weighted picking

sequences like WEP, by optimizing over the order in which ties in priority are broken.

Though we do not offer theoretical welfare guarantees for the FairSequence algorithm,

we present a heuristic approach that optimizes for a high welfare weighted picking sequence.

FairSequence breaks ties in priority order adaptively when they occur, by assigning an

expert to any request with top priority which can receive the highest increase in welfare.

This approach is fast and straightforward to implement. FairSequence thus achieves our

four goals: it is a fast, fair, flexible, and welfare efficient expert assignment mechanism.

We compare our GERR and FairSequence algorithms with three state-of-the-art reviewer

assignment frameworks on three computer science conference reviewer-assignment datasets.

Not only are GERR and FairSequence the only provably (W)EF1 approaches, FairSequence

is an order of magnitude faster than the other methods on all datasets. Most importantly,

we show that FairSequence is often significantly more fair than FairFlow, a fair allocation

protocol [91], on many fairness metrics.
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2.1.2 Additional Preliminaries

Orders. Picking sequence mechanisms assign an order to the requests, and allocate experts

to requests in that order. We define an order on requests i ∈ N as a tuple O = (S, o), where

S ⊆ N is the set of papers in the order and o : S 7→ {1, 2, . . . , |S|} is a permutation on S

mapping papers to positions. Let Ψ(N) denote the set of all orders over subsets of N . We

will also refer to Ψ(M), the set of all orders over subsets of M , defined analogously to Ψ(N).

We slightly abuse notation and say that a request i ∈ O if i ∈ S. For any i, i′ ∈ O, we say

that i ≺O i
′ if and only if o(i) < o(i′). We write i ≺ i′ when O is clear from context. We can

think of an order O = (S, o) as an ordered list [o1, o2, . . . o|S|] such that ol = o−1(l) for all

positions l. We use the notation O + i to indicate the order (S ′, o′) that appends i to the

end of O. Formally, S ′ = S + i, o′(i′) = o(i′) for i′ ∈ S, and o′(i) = |S ′|. We write the empty

order as O∅ = (∅, ∅).

Example 2.1.1. Suppose we have a set of requestsN = {1, 2, 3, 4}, and order O = (S, o)

with S = {1, 3}, o(3) = 1, and o(1) = 2. O can also be written as [3, 1]. The order

O + 4 is represented using S ′ and function o′ with S ′ = {1, 3, 4}, o′(3) = 1, o′(1) = 2,

and o′(4) = 3. We can also write it as [3, 1, 4].

Matroids. A matroid [122] is a pair (E, I) with ground set E and independent sets I,

which must satisfy ∅ ∈ I. Independent sets must satisfy the inclusion property : ∀X ⊆ Y ∈ I,

X ∈ I, and the exchange property : ∀X, Y ∈ I with |X| < |Y |, ∃e ∈ Y \ X such that

X ∪ {e} ∈ I. A partition matroid is defined using categories X1, X2, . . . Xb such that

Xi ∩Xj = ∅ for all i, j and
⋃

1≤i≤bXi = E, and capacities d1, d2, . . . db; the independent sets

are I = {Y ⊆ E | ∀i, |Y ∩Xi| ≤ di}. Given two matroids over the same ground set (E, I1)

and (E, I2), the intersection of the two matroids is the pair (E, {Y | Y ∈ (I1 ∩ I2)}). The

intersection of two matroids may not be a matroid [122].
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Example 2.1.2. Consider the set S = {1, 2, 3}. Define the ground set as E = S × S.

Define categories X1, X2, X3 such that Xi = {(i, 1), (i, 2), (i, 3)}, and define capacities

di = 1 for i ∈ {1, 2, 3}. These sets and capacities define the independent sets of a

partition matroid over E. Any set that duplicates the first element of a tuple, such

as {(1, 1), (1, 2)} is not an independent set, while any set is independent if it contains

tuples with unique first elements, such as {(1, 1), (3, 2), (2, 2)}. This matroid satisfies

the inclusion property, as we cannot introduce a duplicate first element by deleting

a tuple from a set. It also satisfies the exchange property; for any pair of sets with

different sizes, since both sets have tuples with unique first elements, the larger set

must contain a tuple (i, j) such that no tuple in the smaller set has the form (i, ·).

Submodularity. We also use the notion of a submodular set function; submodular functions

formalize the notion of diminishing marginal gains. Given a ground set E, a set function

f : 2E 7→ R, a set X ⊆ E, and an element e ∈ (E \X), we can write the marginal gain of

adding e to X under f as ρfe (X) = f(X + e) − f(X) or simply ρe(X) if f is understood

from context. Given a set E, a function f : 2E 7→ R is submodular if for all X ⊆ Y ⊆ E

and e ∈ E \ Y , ρfe (X) ≥ ρfe (Y ). A set function is monotonically non-decreasing if for all

X ⊆ Y ⊆ E, f(X) ≤ f(Y ). We define the notion of γ-weak submodularity for monotonically

non-decreasing, non-negative functions. Given a monotonically non-decreasing, non-negative

function f : 2E 7→ R≥0, we say that f is γ-weakly submodular if for all X ⊆ Y ⊆ E and

e ∈ E \ Y , γρfe (X) ≥ ρfe (Y ). When γ = 1 we recover submodularity, and γ ≥ 1 always.

Example 2.1.3. Given a set E, a budget additive submodular function f has a

set of weights we assigned to each element e ∈ E, along with a budget B. The

value of a subset S ⊆ E is defined as f(S) .
= min{

∑
e∈E we, B}. This function
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is monotonically increasing, and for any two sets X ⊆ Y ⊆ E and e ∈ E \ Y ,

ρe(X) = we − min{f(X) + we, B} ≥ we − min{f(Y ) + we, B} = ρe(Y ). Consider

the specific set E = {a, b, c, d}, with wa = wb = wc = wd = 1, and budget B = 2.

We can define a budget additive function fBA using these parameters, as well as a

modified function fMOD such that fMOD(E)
.
= fBA(E)|E|. Notice that fMOD({a}) = 1,

fMOD({a, b}) = 4, fMOD({a, b, c}) = 6, fMOD({a, b, c, d}) = 8, and all sets of the same

size have the same value. So ρb({a}) = 3 is the maximum marginal gain for a single

element b, but ρb(∅) = 1. Thus fMOD is γ-weakly submodular with γ = 3.

Scale Invariance. Different methods of computing expert assignment affinity scores may

yield scores on different scales, even when the relative ordering of expert-request pairs remains

consistent. Therefore, we analyze the invariance of EF1 and WEF1 under affine scaling of

affinity scores. Both criteria are invariant to any affine shift with non-negative coefficients.

Definition 2.1.4. Given any valuation function v : 2M → R, the valuation function

v′ : 2M → R is a non-negative affine transformation of v if v′(g) = av(g) + b for all g ∈ M

and a, b ∈ R≥0.

It is natural to assume that a ≥ 0, since experts that provide positive utility under v should

not be estimated to provide negative utility (and vice-versa) under any reasonable affine shift.

If all affinities are assumed to be non-negative, the assumption that b ≥ 0 is reasonable if the

lowest affinity score is already set at 0. We can extend this setting to settings where there

is some obvious lowest possible affinity score. As long as some expert-request pair has the

lowest conceivable affinity score, we can assume that b ≥ 0 for any affine transformation.

Proposition 2.1.5. Given two requests i, j ∈ N , suppose that kN
i = kN

i = k and kN
j = kN

j = l.

Consider the valuation function v : 2M → R, and a non-negative affine transformation of v,

labelled v′. Given some allocation A ∈ Z, for any g ∈ Aj, if vi(Ai)/k ≥ vi(Aj − g)/(l), then
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v′i(Ai)/k ≥ v′i(Aj − g)/l. In other words, the WEF1 criterion is invariant under non-negative

affine transformation. This implies that the EF1 criterion is invariant under non-negative

affine transformation when all bundles have equal size.

Proof.

v′i(Ai)/k − v′i(Aj − g)/l = avi(Ai)/k + b− (avi(Aj − g)/l + b− b/l))

= a(vi(Ai)/k − vi(Aj − g)/l) + b/l ≥ 0.

The implication for EF1 holds by setting k = l and multiplying all (in)equalities by k.

2.2 Fair and Efficient Assignment with Expert Round Robin

We first show how to obtain EF1 expert assignments when all requests have equal demands

(kN
i = kN

i = k for some fixed k ∈ N), and experts do not have lower bounds (kM
g = 0 for

all g ∈M); we handle the more general case in Section 2.3. Our algorithm draws upon the

simple and well-known round-robin mechanism. Given an ordered list of requests, round-robin

proceeds in rounds. In each round, we iterate over the requests in the provided order,

assigning each request its highest valued remaining expert. This allocation is EF1 for additive

valuations without constraints by a simple argument [34]. For any request i, we divide the

assignments into rounds. Request i prefers its own experts to the experts of any request

i′ ≻ i, and it prefers its own bundle to that of any request i′ ≺ i if we ignore the expert

assigned to i′ in the first round.

The constraint that requests must be assigned k distinct experts, C ⪯ 1, poses a

challenge. A trivial modification of round-robin allows us to satisfy the cardinality constraint

— proceed for exactly k rounds, then stop. We might naively update round-robin to satisfy

the distinctness constraint as well, by assigning each request the best expert they do not
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already have. However, this modification can break the EF1 constraint. To see why, suppose

a request i is assigned an expert g in one round. In the next round, i may still prefer g over

any other expert, but we cannot assign it. We will be forced to assign i a worse expert, giving

another request the “second copy” of g. We consider a detailed counterexample below.

Example 2.2.1. Consider an expert assignment instance with 4 requests and 6 experts,

kN
i = kN

i = 3 for all requests i, kM
g = 0 and kM

g = 2 for all experts g, and

V =



2 0 0 1 0.5 ϵ

3 1 2 10 0 0

0 ϵ 0 10 1 0

2 1 3 10 0 ϵ


.

The naive constrained round-robin, where each request is assigned the best expert

they do not already have, can fail to satisfy EF1. If we apply naive constrained round-

robin with the requests in increasing numerical order, we obtain the allocation A1 =

{g1, g5, g6}, A2 = {g4, g1, g3}, A3 = {g4, g5, g2}, A4 = {g3, g2, g6}. However, v4(A2−g) ≥

5 for all g ∈ A2, while v4(A4) = 4+ ϵ. In contrast, the allocation A1 = {g1, g5, g6}, A2 =

{g4, g1, g2}, A3 = {g4, g5, g3}, A4 = {g3, g2, g6} is EF1.

We present a modification of round-robin that takes an order O and assigns experts to

requests in order O such that all constraints are satisfied and the allocation is EF1. Expert

Round Robin or ERR (Algorithm 1) forbids any assignment that violates a crucial invariant

for proving EF1. This invariant derives from the proof of EF1 in the additive case. Any

time we would assign an expert such that EF1 would be violated, we forbid the assignment

and instead assign a different expert. EF1 violations can only arise when another request
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Algorithm 1 Expert Round Robin (ERR)

Require: Requests N , experts M , expert upper limits kM , order O, affinity functions vi,
bundle size limit k, constraints C

1: Initialize allocation A as Ai ← ∅ for all requests i ∈ O
2: Initialize the attempted set Si ← ∅ for all i
3: for Round t ∈ {1, . . . , k} do
4: for i ∈ O in order do
5: for Expert g in decreasing order of vi(g) (break ties lexicographically) do
6: Attempt to assign g to i (Si ← Si + g)
7: if

∑
j∈N |Aj ∩ {g}| < kM

g and A+ I(i, g) ⪯ C
8: if No i′ with g ∈ Si′ envies Ai + g more than one expert
9: Ai ← (Ai + g)

10: Move to the next request in O
11: If no new expert is assigned to i, return A
12: return A

preferred that expert but the assignment was forbidden, either because it had been assigned

already, or because it would have caused an EF1 violation for that request as well. We always

attempt to assign experts in preference order. Thus when we attempt to assign an expert g

to request i, we only need to check for EF1 violations against other requests to which we

have attempted to assign g in the past. Theorem 2.2.2 asserts the correctness of ERR.

Theorem 2.2.2. ERR terminates with an EF1 allocation A where requests receive at most k

distinct experts, no expert g is assigned to more than kM
g requests, and A ⪯ C.

Proof. The algorithm assigns at most one expert to each request in each round for k rounds,

so the constraint that all requests receive at most k experts is satisfied. In addition, the

algorithm always checks that g /∈ Ai, the number of requests which already have g is no more

than kM
g , and A+ I(i, g) ⪯ C is satisfied before assigning g to i. Thus no request receives

duplicate experts, expert upper bounds are satisfied, and constraints C are never violated.

We now prove that the returned allocation is EF1. Consider some arbitrary request i′;

we show that i′ does not envy any other request by more than 1 expert. As in the original

round-robin argument, we divide the assignments of experts to requests into rounds 0, 1, . . . , s,
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where s ≤ k (s < k only when the algorithm terminates early). Round 0 contains the

assignments made during the first iteration of Algorithm 1 to all requests preceding i′ in

O. Rounds 1 through s− 1 begin with the assignment of a new expert to i′ and end with

the assignment of a new expert to the request immediately preceding i′ in O, while round s

begins with assignment to i′ and ends with assignment to some request after i′.

Consider the bundle A(t)
i assigned to some request i ̸= i′ after the end of some round

t ∈ {0, 1, . . . s}. We will define modified bundles Bt
i for all i, and prove by induction

that vi′
(
B

(t)
i

)
≤ vi′

(
A

(t)
i′

)
. For all t, let B(t)

i = A
(t)
i if i′ ≺ i. If i′ ≻ i, B(t)

i = A
(t)
i −

argmax
g∈A(t)

i
vi′(g) .

For the base case, we see that after round 0, |B(0)
i | = 0 for all i and |A(0)

i′ | = 0, so

vi′
(
A

(0)
i′

)
= vi′

(
B

(0)
i

)
= 0.

Now suppose that after round t− 1, we have vi′
(
A

(t−1)
i′

)
≥ vi′

(
B

(t−1)
i

)
for all i. Suppose

there is some i such that after round t, vi′
(
B

(t)
i

)
> vi′

(
A

(t)
i′

)
. i′ is assigned an expert in

all rounds except 0, and because affinities are non-negative i must be assigned an expert

in round t to obtain vi′
(
B

(t)
i

)
> vi′

(
A

(t)
i′

)
. By the inductive hypothesis and the fact that

affinities are additive, i′ must prefer the expert i was assigned in t, gi, to the expert i′ was

assigned in t, gi′ . Because i′ went first in t, this means that we attempted to assign gi to i′

either in t or earlier and i must have checked for envy against i′. This is a contradiction,

since vi′
(
B

(t)
i

)
> vi′

(
A

(t)
i′

)
violates EF1.

It is possible for ERR to return an incomplete allocation when a complete one exists. This

is tight in some sense; we can easily show an instance of the reviewer assignment problem

where no valid, complete allocation is EF1.

Example 2.2.3. Consider an expert assignment instance with two requests with

kN
i = kN

i = k = 2 for all i ∈ N and four experts M = {g1, g2, g3, g4} with kM
g = 0 and
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kM
g = 1 for all g ∈ M . Suppose that V1 =

(
1 1 0 0

)
, and C1 =

(
0 0 1 1

)
.

Then the only valid complete allocation is A = {{g3, g4}, {g1, g2}}, which is not EF1.

It is straightforward to show that ERR always returns a complete, EF1 allocation when

the number of experts is large and there are no additional constraints C.

Proposition 2.2.4. Given an expert assignment instance with m experts, n requests, C = 1,

and kN
i = kN

i = k for all i ∈ N , if m ≥ kn, ERR returns a complete, EF1 allocation.

Proof. Algorithm 1 only refuses to assign an expert g to a request i when g is assigned to too

many requests, g has already been assigned to i, or some other request (to which we have

previously attempted to assign g) “objects” to the assignment. Thus if we have assigned less

than kn distinct experts under Algorithm 1, it must be the case that there is an expert g that

we have not considered for any request. Because there are at least kn distinct experts, we can

see that during any round of the algorithm, there will be such an unconsidered expert. Thus

in any round, a request can always be assigned some expert that has never been considered

for any request, and the selection will not be refused. This proves that the allocation returned

by Algorithm 1 is complete, and we have EF1 from Theorem 2.2.2.

2.3 Non-Uniform Demands and Minimum Reviewer Supply

Requests may sometimes require different numbers of experts. As a motivating example,

conference organizers often run reviewer assignment multiple times to account for late reviews,

borderline papers, and other mitigating circumstances [100]. In addition, conference organizers

might wish to require that each reviewer receives a minimum number of papers to review.

These reviewer lower bounds ensure more balanced workloads for the reviewers. To satisfy

these additional real-world constraints, we introduce variants of ERR that allow for variable

demands kN (here, we assume kN = kN) and expert load lower bounds kM .

29



Algorithm 2 Weighted Expert Picking (WEP)

Require: Requests N , experts M , expert upper limits kM , order O, affinity functions vi,
bundle size limits kN , constraints C

1: Initialize allocation A as Ai ← ∅ for all requests i ∈ O
2: Initialize the attempted set Si ← ∅ for all i ∈ O
3: while ∃i ∈ N such that |Ai| < kN

i do
4: i∗ ← argmini∈N |Ai|/kN

i , breaking ties using O
5: for Expert g in decreasing order of vi∗(g) (break ties lexicographically) do
6: Attempt to assign g to i∗ (Si∗ ← Si∗ + g)
7: if

∑
i∈N |Ai ∩ {g}| < kM

g and A+ I(i∗, g) ⪯ C
8: if All i′ ̸= i∗ with |Si∗ ∩ Si′| > 0 satisfy WEF1 with respect to i∗
9: Ai∗ ← (Ai∗ + g)

10: Move to the next request in argmini∈N |Ai|/kN
i

11: If no new reviewer is assigned to i∗, return A
12: return A

To accommodate variable request demands kN and kN , we present a weighted analogue of

ERR called Weighted Expert Picking (WEP). We replace round-robin with the picking sequence

introduced by Chakraborty et al. [35], which guarantees WEF1. Requests no longer receive

assignments in a fixed order; at each iteration the request i ∈ N which has reached the

smallest fraction of its bundle size limit kN
i is chosen to receive the next expert. We break

ties in this “fraction of satisfied demand” criterion by consulting a fixed tie-breaking order O.

Algorithm 2 shows the complete approach.

Parallel to Theorem 2.2.2, we state that Algorithm 2 yields a WEF1 allocation satisfying

all constraints.

Theorem 2.3.1. Algorithm 2 returns a WEF1 allocation A where each request i ∈ N receives

at most kN
i distinct experts, no expert g is assigned to more than kM

g requests, and A ⪯ C.

Proof. As long as there is some request i with |Ai| < kN
i , we will never pick a request i′ with

|Ai′ | = kN
i′ in the picking sequence, since |Ai|/kN

i < 1 = |Ai′ |/kN
i′ . This proves that when we

terminate, no request i ∈ N has more than kN
i experts.
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In addition, the algorithm always checks that
∑

j∈N |Aj ∩ {g}| < kM
g and A+ I(i, g) ⪯ C

before assigning g to i. Thus no request receives duplicate experts, expert upper bounds are

satisfied, and A ⪯ C.

We now show that the allocation is WEF1, by showing that after a request i ∈ N is

assigned an expert g ∈M , all requests are WEF1 with respect to the request i. Assuming

kN
i ≥ 1 for all i ∈ N , the first n iterations of the algorithm assign each request a single expert,

in order of O. The allocation is clearly WEF1 at each of those iterations. Suppose that

now request i has been assigned an expert g, after all requests have at least one expert. For

any request i′ ∈ N which we have attempted to give an expert that we have also attempted

to give to request i (|Si ∩ Si′| > 0), we have already checked that request i′ does not have

weighted envy for request i over one expert.

It remains to analyze the case when |Si ∩ Si′ | = 0. We have not attempted to give request

i′ any experts that we have also attempted to give to request i, including expert g. Thus,

for any expert gi′ given to request i′, vi′(gi′) > vi′(gi) for any gi that i was given after i′ was

given gi′ . This criterion is sufficient for the proof from [35] to go through.

2.3.1 Generalized Expert Picking Sequences

Both ERR and WEP can be viewed as instantiations of a broader meta-algorithm, depicted in

Algorithm 3. This algorithm applies a request selection criterion θN , and an expert selection

criterion θM . The request selection criterion θN (A,kN ,kN ,kM ,kM ) ∈ Ψ(N) computes, given

a partial allocation A, an ordered set of requests that can be assigned an expert. θN may

also take as an argument a fixed order over requests, O. If it does, then the request selection

function will simply select the next request in the order O. Given a partial allocation A and a

request i ∈ N , the expert selection criterion θM(i, A,C,kN ,kN ,kM ,kM) ∈ Ψ(M) computes

an ordered set of experts that request i can be assigned. Since most of the arguments of

these criteria are clear from context, we will write simply θN(A(, O)) and θM(A, i).
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Algorithm 3 Picking Sequence Expert Assignment
Require: Requests N , experts M , request upper limits kN , expert upper limits kM , affinity

functions vi, constraints C, request selection criterion θN , expert selection criterion θM
1: Initialize allocation A as Ai ← ∅ for all requests i ∈ N
2: while A is not complete do
3: if θN(A) ̸= O∅ and θM(A, i) ̸= O∅ for some i ∈ θN(A)
4: i← first request in θN(A) with θM(A, i) ̸= O∅
5: g ← first expert in θM(A, i)
6: Ai ← Ai + g
7: else
8: return A
9: return A

Concretely, ERR can be implemented by requiring θN(A,O) to select the singleton set

containing the next request in the order O, and requiring θM(A, i) to select experts g ∈M

such that
∑

j∈N |Aj ∩ {g}| < kM
g , A+ I(i, g) ⪯ C, and no other request i′ would envy i more

than one expert after adding g to Ai. Naturally, θM(A, i) is ordered in decreasing order of

vi(g). WEP is implemented with θN(A) = argmini∈N |Ai|/kN
i , ordered by O, and θM(A, i)

defined analogously to before. θM(A, i) now requires WEF1 to be satisfied, rather than EF1.

2.3.2 Minimum Expert Supply

We can also easily introduce minimum expert supply constraints. We will utilize a simple

trick to satisfy these constraints, which can be applied to any instantiation of Algorithm 3.

When the remaining demand equals the number of assignments required to meet expert

minima kM , we restrict the available set of experts to those who need to be assigned to meet

minimum requirements. More formally, when we have

∑
g∈M

max

(
kM
g −

∑
i∈N

|Ai ∩ {g}|, 0

)
=
∑
i∈N

kN
i − |Ai|,
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Algorithm 4 Picking Sequence Expert Assignment with Expert Lower Bounds
Require: Requests N , experts M , request bounds kN ,kN , expert bounds kM ,kM , affinity

functions vi, constraints C, request selection criterion θN , expert selection criterion θM ,
bound modification function h

1: Initialize allocation A as Ai ← ∅ for all requests i ∈ N
2: while A is not complete do
3: kM ,kM ,kN ,kN ← h(A,kM ,kM ,kN ,kN)
4: if θN(A) ̸= O∅ and θM(A, i) ̸= O∅ for some i ∈ θN(A)
5: i← first request in θN(A) with θM(A, i) ̸= O∅
6: g ← first expert in θM(A, i)
7: Ai ← Ai + g
8: else
9: return A

10: return A

we set kM
g = max

(
kM
g −

∑
i∈N |Ai ∩ {g}|, 0

)
for all experts g ∈M . Thus, we spend the final∑

i∈N kN
i − |Ai| steps assigning exactly the experts needed to meet expert minima. If the

algorithm terminates with a complete allocation, it will satisfy the expert lower bounds.

A more general version of this modification takes as input a bound modification function h,

such that h(A,kM ,kM ,kN ,kN ) takes the current allocation A and expert and request bounds

and determines if the bounds need to be modified to satisfy a constraint. The modified

meta-algorithm is displayed in Algorithm 4.

Theorems 2.3.2 and 2.3.3 parallel Theorems 2.2.2 and 2.3.1, showing that when we

modify ERR and WEP to include the bound modification function h, they return EF1 (WEF1)

allocations satisfying all constraints.

Theorem 2.3.2. Algorithm 4, implemented using the θN and θM from ERR, terminates with

an EF1 allocation where requests receive at most k distinct experts, all constraints C are

satisfied, and no expert g is assigned to more than kM requests. If the algorithm assigns k

experts to each request, then all experts will be assigned to at least kM requests.

Proof. Proof of the distinctness of experts per request, expert upper bounds kM , satisfaction

of C, and upper limit on k experts per request follow that of Theorem 2.2.2.
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We show that when the algorithm terminates with a complete allocation, the expert minima

have been satisfied. We assume that the assignment problem is feasible (i.e.,
∑

i∈N kN
i ≤∑

g∈M kM
g and

∑
i∈N kN

i ≥
∑

g∈M kM
g ), so

∑
i∈N kN

i − |Ai| ≥
∑

g∈M max(kM
g −

∑
i∈N |Ai ∩

{g}|, 0) at the beginning of the assignment process.
∑

i∈N kN
i − |Ai| decreases by 1 each

time a request is assigned an expert and reaches 0 by the end of the assignment process,

and
∑

g∈M max(kM
g −

∑
i∈N |Ai ∩ {g}|, 0) decreases by either 1 or 0 each iteration. At

some point, either
∑

g∈M max(kM
g −

∑
i∈N |Ai ∩ {g}|, 0) = 0 and thus all lower bounds are

satisfied, or we have
∑

g∈M max(kM
g −

∑
i∈N |Ai ∩ {g}|, 0) =

∑
i∈N kN

i − |Ai|. Setting kM to

max(kM
g −

∑
i∈N |Ai ∩ {g}|, 0) for all g ∈M ensures that every remaining choice of reviewer

decreases
∑

g∈M max(kM
g −

∑
i∈N |Ai ∩ {g}|, 0) by exactly 1 for each of the remaining request

choices. If the algorithm terminates with a complete allocation, there will be
∑

i∈N kN
i − |Ai|

more choices, so
∑

g∈M max(kM
g −

∑
i∈N |Ai ∩ {g}|, 0) will be 0.

Finally, we must prove that the allocation remains EF1. The proof from Theorem 2.2.2

applies in this case as well. In that proof, we consider two requests i′ and i. Then we show

that if we assume i′ envies i more than one item after some round t (where each round begins

with an assignment to i′), we can derive a contradiction. We still have that i′ must prefer

the expert i got in t, gi, to the expert i′ got in t, gi′ . It is now possible that we performed

the restriction of remaining experts between the assignment of gi′ and the assignment of gi.

But because the set of experts available after the restriction is a subset of the set of experts

available before the restriction, we still would have attempted to assign gi to i′ in t or earlier.

The algorithm would therefore have checked for the EF1 violation when assigning gi to i, and

we can derive the same contradiction as in the proof of Theorem 2.2.2.

Theorem 2.3.3. Algorithm 4, implemented using the θN and θM for WEP, terminates with a

WEF1 allocation where each request i ∈ N receives at most kN
i distinct experts, all constraints
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C are satisfied, and no expert g ∈M is assigned to more than kM
g requests. If the algorithm

assigns exactly kN
i experts to each request, then all experts are assigned to at least kM

g requests.

Proof. The distinctness of experts per request, expert upper bounds kM
g , satisfaction of C,

and upper limit on kN
i experts per request i ∈ N are satisfied for the same reasons described

in Theorem 2.3.1. The lower limits are satisfied for complete assignments for the same reason

described in the proof of Theorem 2.3.2.

We must prove the allocation remains WEF1. Again, we consider the moment when a

request i is assigned an expert g. For all i′ to which we have attempted to assign g, we check

that i′ does not have weighted envy for i over one item if we assign g to i. This check will still

occur even if the expert restriction occurs between i′’s attempt at g and i’s assignment of g.

When we have |Si′ ∩ Si| = 0, we have not attempted to assign any experts to i′ that we

have attempted to assign to i, including g. We stated in the proof of Theorem 2.3.1 that for

any expert gi′ assigned to i′, vi′(gi′) > vi′(gi) for any gi that i received after i′ received gi′ .

This claim is sufficient for the proof from [35] to go through. If the expert restriction occurs

before i′ received gi′ , clearly we still have vi′(gi′) > vi′(gi) for any gi that i received after i′

received gi′ (it is the same argument, but in the restricted problem setting). If the restriction

happens after i′ received gi′ , we see that i′ is being assigned experts from a superset of experts

compared to the previous case. Thus we still have vi′(gi′) > vi′(gi) for any gi that i received

after i′ received gi′ .

2.4 Optimizing Orders for Picking Sequences

We showed how to obtain (W)EF1 allocations of experts to requests, but have not offered

any welfare guarantees so far. We first state that maximizing welfare under ERR or WEP is

NP-hard, which we prove following the techniques of Aziz et al. [6] and Aziz et al. [7].
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Aziz et al. [7] present the decision problem PossibleUtilitarianWelfare: given a

fair allocation instance with n agents, m goods, additive valuations functions vi for all agents

i, a class of picking sequence mechanisms C, and an integer t, is it possible to run a picking

sequence in C and obtain welfare t? To obtain hardness results, they use a problem top-k

PossibleSet [6]: given a fair allocation instance with n agents, m goods, additive valuations

functions vi for all agents i, a class of picking sequence mechanisms C, an agent i, and an

integer k, is it possible to run a picking sequence in C such that i receives its top-k goods?

Proposition 2.4.1. Maximizing welfare subject to round-robin (and ERR) is NP-hard.

Proof. Aziz et al. [6] show that for k ≥ 3, top-k PossibleSet is NP-complete for round-robin

orders (they refer to round-robin orders as strict alternation policies). We use that fact

to show that PossibleUtilitarianWelfare is NP-complete over the set of round-robin

orders. Given an instance of top-k PossibleSet with k ≥ 3 over round-robin orderings, we

construct an instance of PossibleUtilitarianWelfare. One agent has utility of mk2 for

its k most preferred items, and 0 for the rest. The other agents have utility at most k for all

items. Top-k PossibleSet returns true if and only if mk3 utility is achievable.

Reducing an instance of PossibleUtilitarianWelfare with welfare threshold t under

round-robin to maximizing welfare under ERR is simple. We can construct an instance where

all experts complete at most one request. If the round-robin would run for k rounds, then we

require each request to have k experts. The additional envy checks in ERR are only required

when some request cannot be assigned its highest valued expert even though that expert has

remaining capacity. Since each expert cannot be selected more than once total and there are

no conflicts of interest, we never invoke that check, and ERR becomes equivalent to standard

round-robin. Therefore, the maximum welfare under this instance of ERR is at least t if and

only if the original PossibleUtilitarianWelfare problem evaluates to true.
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A similar proof extends to show that optimizing welfare over the tie-breaking order O is

NP-hard for WEP.

Proposition 2.4.2. Maximizing welfare subject to weighted picking (and WEP) is NP-hard.

Proof. Aziz et al. [7] show that PossibleUtilitarianWelfare is NP-complete for recur-

sively balanced orders (orders where each agent picks once in each round). Given an instance

of PossibleUtilitarianWelfare for recursively balanced orders with welfare threshold

t, we can reduce to the problem of maximizing welfare over WEP. If there are k rounds in

the recursively balanced picking sequence, then assume there are k rounds in WEP. Again

all experts complete at most one request. When that is the case, WEP is exactly equivalent

to the weighted picking sequence from [35] (that is, no allocations are rejected because any

attempted assignment will satisfy WEF1). This means that the sequence of assignments

in WEP could have been achieved by a recursively balanced picking sequence in the original

problem, and therefore we achieve a maximum welfare of at least t in WEP if and only if the

original PossibleUtilitarianWelfare problem evaluates to true.

In the remainder of this section, we present a simple greedy approach to approximately

maximize the USW of our picking sequence by optimizing over the ordering of the requests.

We present results using ERR (Algorithm 1), but all results apply equally well to Algorithms 2

to 4. Theorem 2.4.5 can be used to show that greedy selection of an order O is approximately

welfare maximizing for any algorithm implementing Algorithm 4. In particular, when applied

to WEP, this implies that greedily selecting a tie-breaking order for weighted picking sequences

is approximately welfare optimal. Tie-breaking in weighted picking is quite powerful; for

example, the tie-breaking order directly determines the first n picks, since all requests start

with 0 experts.

We define a function USWERR(O,M, k,kM , {vi}i∈N ,C), which represents the USW from

running ERR on agents in the order O with experts M , request bundle size limits kN
i = kN

i = k
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Algorithm 5 Greedy Expert Round Robin (GERR)

Require: Requests N , experts M , expert upper limits kM , affinity functions {vi}i∈N , request
bundle size limit k, constraint matrix C

1: O ← O∅
2: for t ∈ {1, . . . , n} do
3: O ← O + i where i maximizes USWERR(O + i,M, k,kM , {vi}i∈N ,C) over all i ∈ N \ O
4: return O

for all i ∈ N , expert upper limits kM , affinity functions vi for all requests i ∈ N , and constraint

matrix C. When clear from context, we will drop most of the arguments, writing USWERR(O)

to indicate that we run ERR with the order O and all other parameters defined by the current

problem instance. Our algorithm, called Greedy Expert Round Robin (GERR), maintains an

order O, always adding the request i which maximizes USWERR(O + i).

The pseudocode of GERR is presented as Algorithm 5. It returns an order on requests, which

can be directly input to ERR to obtain an EF1 allocation of experts. This algorithm is simple

and flexible. It admits trivial parallelization, as the function USWERR can be independently

computed for each request. One can also reduce runtime by subsampling the remaining

requests at each step. Subsampling weakens the approximation guarantee in theory; while we

do not attempt to analyze the approximation ratio of the subsampling approach in this work,

we run our largest experiments with this variant, and still obtain high-welfare allocations.

Let us now establish the welfare guarantees of GERR. For this section, we assume that the

valuation functions vi have non-negative range.

We show that GERR is equivalent to greedily maximizing a γ-weakly submodular function

over the intersection of two partition matroids. Consider tuples of the form (i, p) where i is a

request and p represents a position in an order. We define a mapping from sets of tuples to

orders. Consider the set E = {(i, p) : i ∈ N, p ∈ {1, . . . , n}}. Define two partition matroids

(E, I1) and (E, I2), such that I1 forbids duplicating requests, and I2 forbids duplicating

positions. Define I1 using a category for each request i, where X1
i = {(i, p) : p ∈ {1, . . . , n}},
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and I1 = {I ⊆ E : ∀i ∈ N, |I ∩X1
i | ≤ 1}. Likewise, I2 is defined using a category for each

position p, where X2
p = {(i, p) : i ∈ N}, and I2 = {I ⊆ E : ∀p ∈ {1, 2, . . . n}, |I ∩X2

p | ≤ 1}.

Any set Q in the intersection of these two matroids can be converted into an order OQ

by sorting Q on the position elements and outputting the request elements in that order.

Formally, given any set Q ∈ (I1 ∩ I2), we construct an order OQ = (SQ, oQ) by taking

SQ = {i ∈ N : ∃p, (i, p) ∈ Q}. For all (i, p) ∈ Q, let p′ = |{(i′, q) ∈ Q : q ≤ p}| and set

oQ(i) = p′. We extend this mapping to all subsets of E by sorting on the position elements as

a primary key and request elements as a secondary key, then deleting all but the first tuple

for each request.

Example 2.4.3. Example showing how sets Q ⊆ E map to orders, and the resulting

allocations from executing round-robin. Consider an instance of the expert assignment

problem with 4 experts and 3 requests, in which each request receives k = 2 experts,

and the expert upper bounds and valuations are given as

kM =

(
2 1 2 1

)
V =


2 5 2 7

1 2 0 9

4 3 6 3

 .

The table below indicates sets Q ⊆ E, how they map to the order OQ, the allo-

cation ERR(OQ) resulting from executing ERR with order OQ, and the welfare of

that allocation USWERR(OQ). The greedy choices of GERR are indicated with as-

terisks. GERR finishes with an EF1 allocation with welfare 21, although there is
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an ordering which achieves 27. Order [2, 1, 3] results in an incomplete allocation.

Q OQ ERR(OQ) USWERR(OQ)

∅ [] {}, {}, {} 0

∗{(1, 1)} [1] {g4, g2}, {}, {} 12

{(2, 1)} [2] {}, {g4, g2}, {} 11

{(3, 1)} [3] {}, {}, {g3, g1} 10

{(1, 1), (2, 2)} [1, 2] {g4, g1}, {g2, g1}, {} 12

∗{(1, 1), (3, 2)} [1, 3] {g4, g2}, {}, {g3, g1} 22

∗{(1, 1), (3, 2), (2, 3)} [1, 3, 2] {g4, g1}, {g2, g3}, {g3, g1} 21

{(3, 1), (2, 2), (1, 3)} [3, 2, 1] {g2, g3}, {g4, g1}, {g3, g1} 27

{(2, 1), (1, 2), (3, 3)} [2, 1, 3] {g2, g1}, {g4, g1}, {g3} 23

With these constructions defined, we observe that maximizing USW for ERR over a

fixed number of rounds k is equivalent to the problem maxQ∈(I1∩I2):|Q|=nUSWERR(OQ) for

the matroids defined above. We will show that GERR greedily maximizes a monotonically

non-decreasing version of our function over our two partition matroids. Next, we show that

when our function is γ-weakly submodular, we provide a γ-dependent approximation ratio.

To make USWERR(OQ) monotonically non-decreasing, we will multiply by a factor of |Q|α,

where α is defined as the smallest positive number such that f(Q) = USWERR(OQ)|Q|α is

monotonically non-decreasing. We first prove that GERR greedily maximizes f(Q). Formally,

Lemma 2.4.4 states that GERR selects the request i maximizing f(Q+ (i, p)) at each iteration.

Lemma 2.4.4. Let f(Q) = USWERR(OQ)|Q|α for some α such that f is monotonically non-

decreasing. Suppose GERR selects request it at each round t, resulting in a set of tuples Qt.

Then for all t, (it, t) maximizes f(Qt−1+(i, p)) over all (i, p) such that Qt−1+(i, p) ∈ (I1∩I2).
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Proof. We first show that any greedy maximizer for USWERR is also a greedy maximizer of f .

Suppose that USWERR(OQ+(i,p)) ≥ USWERR(OQ+(i′,p′)). Because |Q+ (i, p)|α = (|Q|+ 1)α =

|Q+ (i′, p′)|α, we have

USW
ERR

(OQ+(i,p))|Q+ (i, p)|α ≥ USW
ERR

(OQ+(i′,p′))|Q+ (i′, p′)|α.

We also must prove that we can always simply append to the end of the current ordering

(rather than perhaps selecting an arbitrary tuple (i, p)). Formally, we want to show that at

any point in the algorithm, there is a tuple (i, |O|+ 1) that maximizes USWERR(O + (i, p)).

This is shown via a strong induction argument. For the base case, if some tuple (i, p)

maximizes USWERR(O∅ + (i, p)), then it is easy to see that O∅ + (i, p) = O∅ + (i, 1) and

so we can use (i, 1) without loss of generality. Inductively, assume that we have a set

Q = {(i1, 1), (i2, 2), . . . (i|Q|, |Q|)} and some tuple (i, p) maximizes f(Q + (i, p)) such that

Q+ (i, p) ∈ (I1 ∩ I2). Necessarily, p > |Q|, since all other positions p′ ≤ |Q| have been filled

in Q. Therefore, for any available position k, we have that OQ+(i,k) = [i1, i2, . . . i|Q|, i] and

thus f(Q+ (i, k)) is the same for all allowed k. So without loss of generality, we can assume

that we can select a request for the next available position (as is done in GERR).

The greedy algorithm for maximizing f(Q) terminates when |Q| = n, so we must also

ensure GERR terminates with an order on all n requests. Although GERR only considers

USWERR(O), which may not be monotonically increasing, by construction it runs until

reaching a full order over all requests. Thus GERR is equivalent to greedily maximizing f .

We are now ready to prove the 1 + γ approximation ratio for GERR (Theorem 2.4.5). Our

proof is inspired by the proof in [61] that a similar greedy algorithm gives a 1
p+1

-approximation

for maximizing a monotone submodular function over the intersection of p matroids. However,

the introduction of γ-weak submodularity changes the proof, and we can simplify elements of

the proof for our setting.

41



Theorem 2.4.5. Suppose that f is the monotonically non-decreasing, γ-weakly submodu-

lar function f(Q) = USWERR(OQ)|Q|α. The set Qalg returned by GERR satisfies f(Qalg) ≥
1

1+γ
f(Q∗), where OQ∗ is the optimal request order for ERR. Because |Qalg| = |Q∗|, this implies

that Q approximates the maximum welfare with constant 1
1+γ

.

Proof. Let Qt represent the subset of Qalg after step t of GERR, where we add the element

(it, t) to Qt−1. Let (i∗t , t) denote the pair in Q∗ which places request i∗t in position t. Denote

L = |Q∗ \Qalg|. Consider the elements of Q∗ \Qalg = {(i∗t1 , t1), . . . (i
∗
tL
, tL)}, ordered so that

t1 < t2 < . . . tL. Let Qalg ∪ {(i∗t1 , t1), . . . (i
∗
tl
, tl)} be denoted as Qalg

l (with Qalg
0 = Qalg). By

monotonicity of f , f(Q∗) is bounded from above by:

f(Qalg ∪Q∗) = f(Qalg) +
L∑
l=1

ρ(i∗tl ,tl)
(Qalg

l−1). (2.1)

By γ-weak submodularity of f , we have that

ρ(i∗tl ,tl)
(Qalg

l−1) ≤ γρ(i∗tl ,tl)
(Qtl−1). (2.2)

Equality 2.1 and inequality 2.2 imply that

f(Q∗) ≤ f(Qalg) + γ
L∑
l=1

ρ(i∗tl ,tl)
(Qtl−1),

which (again by monotonicity of f) is bounded by

f(Qalg) + γ
n∑

t=1

ρ(i∗t ,t)(Qt−1). (2.3)

Next, we claim that for all t,

ρ(i∗t ,t)(Qt−1) ≤ ρ(it,t)(Qt−1). (2.4)
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At step t, the greedy algorithm chose to add (it, t) to Qt−1, with it maximizing f(Qt−1+(it, t)).

If (i∗t , p) is not present in Qt−1 for any p, then the greedy algorithm would have considered

adding (i∗t , t) and determined that it was better. Suppose that (i∗t , p) ∈ Qt−1 for some p.

The greedy algorithm proceeds by filling positions from left to right, so p ≤ t − 1. By

the definition of our mapping from sets to orders, i∗t will take position p and ignore (i∗t , t).

Thus ρ(i∗t ,t)(Qt−1) = 0 ≤ ρ(it,t)(Qt−1). In either case, inequality (2.4) holds. Combining (2.3)

with (2.4) yields

f(Q∗) ≤ f(Qalg) + γ
n∑

t=1

ρ(it,t)(Qt−1) = (1 + γ)f(Qalg).

When γ = 1 (f is submodular), Theorem 2.4.5 yields a 1
2
-approximation guarantee, which

beats the 1
3
-approximation guarantee provided by Fisher et al. [61]. The greedy algorithm

is a tight 1
2
-approximation for submodular maximization in the unconstrained regime [26],

which our result matches even though we operate in a constrained (but less general) space.

2.5 FairSequence: a Fast and Fair Expert Assignment Algorithm

We have shown extensively how to obtain fair and approximately welfare efficient expert

assignments. However, GERR can be prohibitively slow.

Proposition 2.5.1. The runtime of GERR is O(kmn4), where k is the number of experts

assigned per request, m is the total number of experts, and n is the total number of requests.

Proof. There are n positions to fill in the round-robin order. At each position, we have to

check at most n requests to determine which is the greedy choice. For each choice of request,

we run ERR on at most n requests over at most k rounds. When a request gets assigned an

expert during ERR, we may have to attempt to assign at most m experts, and each time we
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attempt to assign, we have to check against at most n other requests for EF1 violations. Thus,

each individual assignment during ERR takes O(nm) time, and there are O(nk) iterations

of this. ERR takes O(kmn2) time, and we have to run it O(n) times to select the greedy

maximizer for each position, over n positions. Thus, total runtime is O(kmn4).

In initial experiments of conference reviewer assignment we found that GERR can finish in a

reasonable amount of time (one or two days) on smaller conferences (m,n < 1000). Even this

runtime is not ideal, as conference organizers often must determine reviewer assignments over

the course of several days and typically try multiple assignments using different formulas for

affinity scores. In this section, we describe an approach that has improved speed and empirical

welfare. Our algorithm, FairSequence, uses the weighted picking sequence described by

Chakraborty et al. [35], similarly to WEP described in Section 2.3. However, rather than

breaking ties using an order that is fixed ahead of time, we will break ties greedily for

each tie-break. Thus, rather than having to run the picking sequence multiple times to

determine the greedy choice in the order, we can run a single picking sequence with the

determination of the greedy choice consisting of a simple maximum operation over a matrix.

Because FairSequence uses the picking sequence derived from Chakraborty et al. [35], it still

maintains the WEF1 criterion. FairSequence is described in Algorithm 6. FairSequence

has a provably faster runtime than GERR (Proposition 2.5.2), and in practice it is significantly

faster than three baseline reviewer assignment algorithms (Section 2.6).

The proof of Theorem 2.4.5 also applies to FairSequence. Rather than constructing a set

of tuples of requests and positions (i, p), we construct a set of triples of requests, positions,

and times (i, p, t). These triples determine how to break ties in priority at each time step.

Each request-time pair must be assigned at most one position, and each position-time pair

must be assigned at most one request.
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Algorithm 6 FairSequence

Require: Requests N , experts M , request bounds kN ,kN , expert bounds kM ,kM , affinity
functions vi, constraints C, bound modification function h

1: Initialize allocation A as Ai ← ∅ for all requests i ∈ N
2: while ∃i : |Ai| < kN

i do
3: kM ,kM ,kN ,kN ← h(A,kM ,kM ,kN ,kN)
4: S∗ ← argmini∈N |Ai|/kN

i

5: for i ∈ S∗ do
6: Select gi ∈ M as the expert maximizing vi(gi) such that

∑
i∈N |Ai ∩ {gi}| < kM

gi
,

gi /∈ Ai, A+ I(i, gi) ⪯ C, and all i′ ̸= i satisfy WEF1 with respect to Ai + gi
7: if No valid pair i, gi exists
8: return A
9: else

10: Select (i∗, gi∗) that maximizes vi∗(gi∗)
11: Ai∗ ← Ai∗ + gi∗
12: return A

Proposition 2.5.2. The runtime of FairSequence is O(kmn3), where k is the maximum

number of experts assigned per request, m is the total number of experts, and n is the total

number of requests.

Proof. FairSequence fills each of the nk positions in the picking sequence sequentially. At

each position, we select from at most n requests, and each request selects from m experts. For

each request-expert pair, we may have to check n other requests to avoid WEF1 violations.

In addition to the improved worst-case runtime, FairSequence can drastically improve on

the O(kmn3) upper bound in many cases. In contrast to all algorithms presented up to this

point, once we find a single valid request-expert pair to assign, we can automatically rule out

any request-expert pairs with lower affinity score. We can also apply another shortcut; when

checking that the WEF1 criterion is met on line 6, it is sufficient to only compare against the

requests i′ that have vi′(g) > vi′(g
′) for some g ∈ Ai ∪{gi} and g′ ∈ Ai′ . When vi′(g) ≤ vi′(g

′)

for all g ∈ Ai and g′ ∈ Ai′ ,
vi′ (Ai)

|Ai| ≤
vi′ (Ai′ )
|Ai′ |

. This is equivalent to WEF1 when |Ai| = kN
i

and |Ai′ | = kN
i′ , as is the case in a complete allocation. In expert assignment settings with
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subject areas (such that experts will largely be assigned to requests within a small number of

subjects), this can rule out most comparisons across major subject areas.

FairSequence maintains a WEF1 guarantee if it terminates with a complete allocation.

Proposition 2.5.3. If FairSequence returns a complete allocation, that allocation is WEF1.

Proof. This holds by the final condition on line 6 of Algorithm 6. This condition implies

that after every assignment of some expert g to some request i, we have checked for all other

requests i′ if WEF1 is met.

Despite its benefits, FairSequence may not always terminate with a complete alloca-

tion. In fact, OpenReview reported a large AI conference on which FairSequence fails

to return a complete allocation (the team was not authorized to share the data with

us, nor to release the details of the conference). Therefore, we introduce a second al-

gorithm FairSequenceUnchecked that will always terminate with a complete allocation.

Although the second algorithm is not guaranteed to be WEF1, the fact that the algorithm

is based on a weighted picking sequence implies that the allocation will still be roughly

fair. FairSequenceUnchecked operates similarly to FairSequence. However, we no longer

perform the additional checks used to ensure FairSequence is WEF1. In addition, because

the picking sequence assigns experts irrevocably, when an assignment problem instance

is highly constrained it may be possible for some request to have no feasible assignments

later in the process. When this occurs, we have to revoke (and replace) some of the earlier

assignments in order to free up a feasible expert to assign. We use a heuristic approach,

where we run the algorithm with multiple different β values, indicating the amount by which

we allow welfare to drop during any of these swaps. In order to allow i to swap g′ for g, we

require that vi(g) ≥ βvi(g
′). Setting β = 1 requires that no swaps can reduce the welfare of

i, and provides little flexibility in assignments. Setting β = 0 allows any swap, potentially

impacting welfare and fairness quite a bit, but ensuring termination with a complete and

46



constraint-satisfying allocation. Although these swaps might again cause WEF1 violations,

by progressively decreasing β we can limit the amount of welfare lost during this process.

FairSequenceUnchecked is presented in Algorithm 7.

Algorithm 7 FairSequenceUnchecked

Require: Requests N , experts M , request bounds kN ,kN , expert bounds kM ,kM , affinity
functions vi, constraints C, bound modification function h, sorted beta values β

1: vmax ← maxi∈N,g∈M vi(g)
2: for β ∈ β do
3: Initialize allocation A as Ai ← ∅ for all requests i ∈ N
4: while ∃i : |Ai| < kN do
5: kM ,kM ,kN ,kN ← h(A,kM ,kM ,kN ,kN)
6: S∗ ← argmini∈N |Ai|/kN

i

7: for i ∈ S∗ do
8: Select gi ∈ M as the expert maximizing vi(gi) such that

∑
i∈N |Ai ∩ {gi}| < kM

gi
,

gi /∈ Ai, A+ I(i, gi) ⪯ C
9: if No valid pair i, gi exists

10: Savail ←
{
g ∈M :

∑
i∈N |Ai ∩ {gi}| < kM

gi

}
11: S ← {(g,−1) : g ∈ Savail}
12: S ← S + {(g, i) : i ∈ N, g ∈ Ai}
13: E ← {((g′, i′), (g, i), vmax + vi(g)− vi(g′)) : g ∈ Ai, g

′ /∈ Ai,A + I(i, g′) − I(i, g) ⪯
C, vi(g

′) ≥ βvi(g)}
14: Set graph G← (S,E)
15: Z = (g0,−1), (g1, i1), . . . (gz, iz) ← shortest weighted path in G from Savail to a

request iz with expert gz ∈ Aiz s.t. ∃i∗ ∈ S∗ with gz /∈ Ai∗ and A+ I(i∗, gz) ⪯ C
16: Swap experts along Z (Aij ← Aij − gj + gj−1 for j ∈ {1, . . . z}
17: i∗ = argmax{i∈S∗:gz /∈Ai,A+I(i,gz)⪯C} vi(gz)
18: gi∗ ← gz
19: if No valid i∗ exists
20: Restart with lower value of β
21: else
22: Select (i∗, gi∗) that maximizes vi∗(gi∗)
23: Ai∗ ← Ai∗ + gi∗
24: return A

Theorem 2.5.4. FairSequenceUnchecked returns a complete allocation satisfying all as-

signment constraints, if such an allocation exists.
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Proof. It suffices to consider the case when β = 0. Suppose the picking sequence reaches a

point where there are no valid assignments possible to the requests S∗ = argmini∈N |Ai|/kN
i ,

but some experts have not yet reached their maximum load. Denote the partial allocation up

to this point as A. Consider any request i ∈ S∗. There is a complete allocation Ac satisfying

all assignment constraints, where Ac
i = {g1, g2, . . . gkN

i
}. |Ai| < |Ac

i |, so there is some expert

g ∈ Ac
i \ Ai. If g has not reached its load upper bound in A, we could add g to Ai, since g

does not have a conflict of interest with i. So g must have reached its load upper bound

under A. Consider any request that has been assigned g in A. One such request, i′, must

have g /∈ Ac
i′ , and instead there is some g′ /∈ Ai′ with g′ ∈ Ac

i′ . Again, if g′ is available, we can

simply assign g′ to i′ and g to i. If not, the argument repeats for g′ – there must be some

request currently assigned g′ that does not receive g′ in Ac. This sequence must eventually

terminate, since there are a finite number of experts and requests. Thus, eventually we will

find a path to the set of experts with remaining load, and we will be able to make transfers

along this path to our request p, allowing us to increase the total number of assignments by 1

and move on with the rest of the picking sequence.

FairSequenceUnchecked may have a very long runtime. However, FairSequence often

terminates with a complete allocation in practice, making FairSequenceUnchecked unneces-

sary. In addition, we expect that the picking sequence will run almost to completion before

needing to make any of the swaps proscribed by FairSequenceUnchecked. This means that

the additional runtime of finding and executing these swaps will typically not have a strong

impact on the overall runtime.

Proposition 2.5.5. The runtime of FairSequenceUnchecked is O(|β|kn(nm+m)2), where

|β| is the number of values of β in β, k is the maximum number of experts assigned per

request, m is the total number of experts, and n is the total number of requests.
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Proof. Like FairSequence, FairSequenceUnchecked fills each of the nk positions in the

picking sequence sequentially. At each position, we may have to visit all nodes and edges of

the exchange graph. Since there are O ((n+ 1)m) nodes, this operation costs O((nm+m)2)

time. In the worst case, we have to run the main loop of the algorithm |β| times.

2.6 Empirical Fairness, Efficiency, and Runtime Analysis

We compare GERR and FairSequence against baselines on three conference datasets. We

find FairSequence is over an order of magnitude faster than all baselines and much fairer

(in terms of WEF1 and Gini) than all baselines except PeerReview4All (PR4A) [157].

2.6.1 Experimental Design

We run experiments on three conference datasets: Medical Imaging with Deep Learning

(MIDL), Conference on Computer Vision and Pattern Recognition (CVPR), and the 2018

iteration of CVPR. According to Shah [148], the “CVPR” dataset is from 2017, though the

paper introducing the dataset does not list the year [91]. We assign the experts (reviewers)

to the requests (papers).

MIDL, CVPR, and CVPR’18 are standard datasets in the reviewer assignment literature,

provided as pre-computed affinity score matrices, reviewer load upper bounds, and paper

demands. MIDL is an order of magnitude smaller than CVPR and CVPR’18, and CVPR’18

is less challenging than CVPR due to a higher ratio of reviewer availability to paper demand.

A summary of the data statistics appears in Table 2.1. For CVPR’18, while affinities are

between 0 and 11, most are between 0 and 1. In addition, reviewer load upper bounds vary

by reviewer but range between 2 and 9. All conferences have kM
g = 0 for all g ∈M .

We compare our methods to the FairFlow algorithm [91], the Toronto Paper Matching

System (TPMS) [38], and PeerReview4All (PR4A) [157]. FairFlow is currently implemented

in OpenReview, and it is in widespread use. TPMS (also in widespread use) provides an
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Table 2.1: Data summary for the three reviewer assignment datasets.

Name: n m val. range k kM
g

MIDL: 118 177 [−1, 1] 3 4

CVPR: 2623 1373 [0, 1] 3 6
CVPR’18: 5062 2840 [0, 11] 3 2− 9

upper bound on welfare without fairness guarantees. PR4A was used by ICML 2020 [156]. All

algorithms are publicly available on Github [119, 125, 160].

Following Kobren et al. [91] and Stelmakh et al. [157], we only run one iteration of PR4A

on CVPR and CVPR’18. On those two conferences, PR4A maximizes the minimum paper

score, but stops before maximizing the next smallest score.

We also implemented the Constrained Round Robin (CRR) algorithm [8]. CRR is

approximately 40 times slower than GRRR on MIDL, taking 400 seconds instead of 10.

GRRR takes about 18 hours to run on CVPR. Extrapolating these results, we can expect

CRR to require a month of computation time or longer on CVPR (it did not terminate in

our experiments). Given its infeasible runtime, we did not continue to compare against CRR

as a baseline. Due to the size of the CVPR’18 dataset, we subsample 100 papers at each

iteration of GRRR rather than testing every available paper. We recorded means and standard

deviations over 5 runs, but found little variation in solution quality from run to run.

2.6.2 Fairness and Efficiency

Fairness and efficiency results for all conferences are included in Table 2.2. We report

the USW, minimum paper score, and number of EF1 violations for each algorithm. For each

setting with at least one violation of the EF1 criterion, we report the total number of papers

that envy some other paper more than one reviewer, and the total number of papers that are

envied by some paper by more than one reviewer. We report the USW as the percentage
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of the optimal value (given by TPMS). For an allocation A, the number of EF1 violations is

the number of ordered pairs of papers (i, i′) ∈ (N ×N) failing EF1. There are n2 − n total

potential violations, since an agent cannot envy itself.

Table 2.2: High-level fairness and welfare statistics for all algorithms on all three conferences.

Alg. USW (%
OPT) (↑)

Min Score
(↑)

EF1 Viol.
(↓)

Num.
Envious (↓)

Num.
Envied (↓)

FairFlow 100% 0.94 0 0 0
TPMS 100% 0.90 0 0 0

MIDL PR4A 98% 0.92 0 0 0
GRRR 98% 0.83 0 0 0
FairSeq 99% 0.87 0 0 0

FairFlow 96% 0.77 23244 688 1058
TPMS 100% 0.00 471256 717 2097

CVPR PR4A 94% 0.77 83 14 75
GRRR 88% 0.00 0 0 0
FairSeq 92% 0.00 0 0 0

FairFlow 97% 9.79 23 21 23
TPMS 100% 1.37 134 65 108

CVPR’18 PR4A 97% 12.68 2 1 2
GRRR 94% 1.78 0 0 0
FairSeq 96% 1.74 0 0 0

FairFlow and TPMS have very high levels of EF1 violations on CVPR. Although some

EF1 violations may be permissible, a large number of violations implies that many papers

received unnecessarily imbalanced assignments relative to other papers. We also show the

number of papers that have envy for another paper, that cannot be rectified by dropping one

reviewer. This analysis shows that the EF1 violations are generally spread out across roughly

10% of the papers, but those papers typically envy a much larger number of papers. In other

words, there is a small proportion of papers that received an unduly low quality of reviewer

assignments, and would have strongly preferred many other papers’ assignments.
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Figure 2.1: Envy violations and reviewer quality in CVPR, using TPMS assignment.

To further understand the potential sources and impacts of EF1 violations, we analyze

the distribution of papers that have envy over one reviewer for any other paper in the TPMS

assignment for CVPR. Although the paper identities are not available in the dataset, we can

simulate a subject area classification by clustering papers. We represent each paper i ∈ N as

the vector of affinity scores between i and all reviewers, Vi. We then cluster these vectors

into 10 clusters using agglomerative clustering under a Euclidean metric and Ward linkage

function [145]. Figure 2.1a shows the percentage of papers in each cluster that envy at least

one other paper more than one reviewer. We can see that some of the clusters have very high

percentages of strongly envious papers (up to 40%), while others have almost no envy.

What drives these WEF1 violations? In Figure 2.1b, we plot the number of “highly

qualified” reviewers for a subject area, divided by the number of papers in the area. We

define a reviewer as highly qualified for a subject if the average affinity over the top four
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Table 2.3: Inequality statistics for GRRR, FairSequence, FairFlow, and PR4A.

Alg. Lowest 10% (↑) Lowest 25% (↑) Gini (↓) Envy (↓)

MIDL

FairFlow 1.051± .072 1.186± .131 .146 .501
PR4A 1.069± .082 1.211± .135 .127 .448
GRRR .995± .095 1.164± .157 .145 .834
FairSeq 1.040± .085 1.191± .139 .140 .146

CVPR

FairFlow .838± .032 .908± .068 .233 64462
PR4A 1.065± .150 1.324± .247 .145 9287
GRRR .898± .176 1.110± .217 .183 22400
FairSeq .978± .139 1.197± .218 .169 10602

CVPR’18

FairFlow 11.053± .536 12.519± 1.805 .151 6940
PR4A 15.280± .952 16.668± 1.348 .103 2480
GRRR 8.923± 2.890 12.220± 3.528 .168 28840
FairSeq 10.084± 2.540 12.950± 3.182 .154 17419

most similar papers in the subject exceeds some threshold. Figure 2.1b demonstrates the

number of “highly qualified” reviewers per subject area as we vary the qualification threshold.

The subject areas with the highest fraction of submissions violating EF1 also tend to have

lower ratios of qualified reviewers to papers, indicating that EF1 violations accumulate in

more heavily resource-constrained subject areas. It is possible that these subject areas suffer

from a dearth of qualified reviewers; thus, any papers that receive qualified reviewers are

inevitably envied by other papers in that subject area.

For additional measures of inequality, we compute the mean and standard deviation

of paper scores for the bottom decile and quartile of papers per allocation. We consider

allocations to be more fair if they allocate higher scores to these disadvantaged papers. We

also calculate the Gini coefficient, and the sum of the total envy over all ordered paper pairs

(i, i′) ∈ (N × N). The results are summarized in Table 2.3. FairSequence significantly

outperforms FairFlow in the scores given to lower decile and quartile papers, as well as in
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the Gini index. These metrics are closer on MIDL and CVPR’18, which we have already seen

are less constrained settings.
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Figure 2.2: Distribution of paper valuations for MIDL under TPMS, FairFlow, and
FairSequence.

Figures 2.2 to 2.4 show the full distribution of paper scores under TPMS, FairFlow, and

FairSequence for MIDL, CVPR, and CVPR’18. MIDL shows almost no variation across

algorithms, while CVPR and CVPR’18 show more nuanced tradeoffs across algorithms. For

CVPR (Figure 2.3), FairFlow maximizes the minimum paper score, but it leaves many

papers clustered near the minimum paper score. FairSequence smoothly shifts the entire

distribution of paper scores rightward. PR4A is much fairer than both algorithms, but it does

not handle variable paper demands, and has a higher computational overhead, as we will

see in Section 2.6.3. For CVPR’18 (Figure 2.4), FairSequence outperforms FairFlow on
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Figure 2.3: Distribution of paper valuations for CVPR under TPMS, FairFlow, and
FairSequence.

low percentiles, but TPMS shows stronger bottom quartile scores than either. However, TPMS

creates a cluster of very low scoring papers that are fully or partially mitigated by the other

approaches. Once again, PR4A seems to maintain strong fairness guarantees relative to all

baselines.

2.6.3 Runtime Analysis

Perhaps the biggest benefit of FairSequence is its greatly improved runtime. We dis-

play the runtimes (in seconds) of PR4A, FairFlow, TPMS, and FairSequence in Figure 2.5.

Runtimes are not reported for MIDL since all algorithms take < 10 seconds to run. GRRR

takes longer than a day to run on CVPR and CVPR’18, so we also do not include it in
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Figure 2.4: Distribution of paper valuations for CVPR’18 under TPMS, FairFlow, and
FairSequence.

the analysis. We find that FairSequence is faster than even TPMS, which has no fairness

guarantees. Further, FairSequence has been implemented in pure Python while the other

three rely primarily on highly optimized optimization tools (PR4A and TPMS were implemented

using Gurobi, and much of the computation in FairFlow was done using Google’s OR-Tools).

Despite these implementation differences, FairSequence is consistently at least 3 times faster

than TPMS, 10 times faster than FairFlow, and 50 times faster than PR4A.

2.6.4 Estimation of Empirical Guarantees

We estimate α and γ for GERR on MIDL, CVPR, and CVPR’18. The results are displayed in

Table 2.4. For any order O and any paper i /∈ O, we must have that USWERR(O+ i)|O+ i|α ≥
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Figure 2.5: Runtimes of FairSequence, TPMS, FairFlow, and PR4A on CVPR and CVPR
2018.

USWERR(O)|O|α. When USWERR(O + i) > USWERR(O), any positive α will satisfy this

inequality. We estimate α by sampling orders O and papers i /∈ O, and we take our estimate

to be slightly greater than the maximum α found for any O and paper i ∈ N . For MIDL, we

found that no sampled O and i violate monotonicity, so we set α = 0.01. Using our estimated

α values, we then estimate γ. Here, we sample X and Y so that X ⊆ Y , and some pair

(i, p) ∈ (N × {1, . . . n}) with (i, p) /∈ Y . We need γ ≥ ρ(i,p)(Y )

ρ(i,p)(X)
for all samples. Similarly to

our α estimate, we compute ρ(i,p)(Y )

ρ(i,p)(X)
for all samples and then estimate γ to be slightly greater

than the maximum value. We found in all experiments that our chosen α parameter led to all

positive marginal gains during the γ estimation, improving our confidence in the α estimates.

γ is rather large for CVPR and CVPR’18. It is possible that other conferences or other

application areas would yield welfare functions that are closer to monotonically increasing

and submodular, leading to lower values of γ.

57



Table 2.4: Estimated α and γ parameters for all three conference datasets.

α γ

MIDL 0.01 1.21
CVPR 1.03 50.62

CVPR’18 0.51 17.41

2.7 Fairness to Reviewers

We take the position throughout this thesis that whenever fairness is relevant, fairness is

considered with respect to requests rather than with respect to experts. In most applications,

completion of a request is a chore that the experts have volunteered or are being paid to

complete, while requests (and society more broadly) benefit substantially from assignment

of appropriate experts. Still, we verify that GERR and FairSequence are at least as fair to

reviewers as the baselines. For each conference, we compute the distribution of reviewing

loads for all algorithms. Our method is relatively consistent with the baselines, and does not

introduce a large unfairness in reviewing load. Applying Algorithm 4, we also test ERR with

reviewer load lower bounds of kM
g = 2 for all g ∈ M (the value used in [91]). On all three

conferences, the algorithm terminates with complete allocations satisfying reviewer lower and

upper bounds, while maintaining EF1 guarantees and competitive USW.

For each algorithm and conference, we compute the number of reviewers receiving each

possible reviewing load. These results are displayed in Figure 2.6. This figure also include

results from FairIR, another algorithm introduced in Kobren et al. [91] that has not been

applied in a real conference setting to date. Reviewer g ∈M can receive a load in the interval

[0,kM
g ]. In general, our approaches are about as fair as the other algorithms in terms of

reviewer load, though on CVPR there are about 100 reviewers receiving one or two extra

papers compared to FairFlow and TPMS.
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Figure 2.6: Distribution of reviewer loads for all algorithms on each dataset.

We also compare multiple statistics of reviewer welfare and fairness in Table 2.5. Because

reviewers consider papers to be chores, we first convert the affinity scores by subtracting

the maximum affinity score (per conference) from vi(g) for all papers i ∈ N and reviewers

g ∈M . We can then specify vg(i) using these new values (and bundles are valued additively,

as before). The maximum score for any vg(i) is 0 and the minimum score is the negative of

the original maximum vi(g). In addition, higher scores are better, with the best score being 0

either because no papers were assigned or because all assigned papers had maximum affinity.
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Table 2.5: Statistics for reviewer-centric scores on all three conferences.

Alg. USW
(↑)

Min
Score

(↑)

EF1 Viol. (↓) Lowest 10% (↑) Lowest 25% (↑)

FairFlow -.86 -2.57 6611 -2.34± .16 -2.04± .27
TPMS -.86 -2.57 6560 -2.34± .15 -2.04± .27

MIDL PR4A -.88 -2.60 6632 -2.36± .15 -2.10± .24
GRRR -.88 -2.86 6667 -2.40± .16 -2.12± .27
FairSeq -.88 -2.77 6659 -2.38± .18 -2.07± .29

FairFlow -1.92 -6.00 1.645× 104 -5.50± .50 -4.85± .71
TPMS -1.77 -6.00 2.778× 104 -5.92± .27 -4.91± 1.00

CVPR PR4A -1.99 -6.00 7.921× 104 -6.00± 0.00 -5.38± 1.12
GRRR -2.26 -6.00 7.865× 104 -6.00± 0.00 -5.73± .54
FairSeq -2.05 -6.00 7.468× 104 -6.00± 0.00 -5.53± .83

CVPR
’18

FairFlow -21.00 -95.50 1.119× 106 -65.50± 11.53 -48.84± 16.07
TPMS -19.72 -94.00 1.094× 106 -63.90± 11.82 -46.93± 16.37
PR4A -21.08 -93.87 1.134× 106 -64.01± 11.73 -47.44± 16.08
GRRR -22.21 -94.45 1.219× 106 -69.77± 10.26 -53.28± 15.86
FairSeq -21.28 -95.22 1.216× 106 -70.19± 10.48 -52.89± 16.58

Note that the EF1 criterion is different for chores as well. An allocation A is envy-free up

to one chore (EF1) for experts (reviewers) if for all pairs of experts (g, g′) ∈ M2, either

vg(Ag) ≥ vg(Ai′) or ∃i ∈ Ag such that vg(Ag \ {i}) ≥ vg(Ai′). Interestingly, it appears that

TPMS has the best efficiency and fairness properties for reviewers, despite the fact that TPMS

especially shows poor fairness properties for papers. No algorithm performs particularly well

in terms of reviewer fairness, since all algorithms have fairly large numbers of EF1 violations.

These results highlight the tradeoff between fairness for papers and fairness for reviewers.

Nothing about these results indicates that obtaining fair outcomes for both papers and

reviewers is impossible, but they do highlight the need for an algorithm explicitly designed to

be fair to both sides.
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2.8 Extending to Submodular Valuations

It might be natural to try to extend FairSequence to valuations beyond additive. Indeed,

existing literature has already explored the problem of utilitarian welfare maximization for

reviewer assignment under some submodular valuations. One line of work identifies multiple

topics per paper, and assigns reviewers to obtain strong coverage over each paper’s topic

[85, 86]. Ahmed et al. [1], Kou et al. [92] work in a similar setting, providing approximation

guarantees for the problem of maximizing utilitarian welfare. These works do not consider

fairness across papers.

The picture becomes more interesting once we turn our attention to fairness constraints

or fair welfare objectives. When allowing submodular valuations, Chakraborty et al. [37]

identify an example where a complete weighted EF1 allocation does not exist. In their setting,

requests’ weights for computing the WEF1 constraint do not necessarily correspond to limits

on the requests’ bundle sizes (as they do in this thesis).

Example 2.8.1 (Chakraborty et al. [37]). Suppose we have two requests and six or

more experts (all with unit capacity). Both requests can receive between zero and

six experts. Request 1 has weight 1 and request 2 has weight 2. Request 1 values all

bundles A1 ⊆M with value |A1|. Request 2 values all bundles except the empty bundle

with value 1. Request 2 will have weighted envy over one item for request 1 whenever

request 1 is assigned more than one expert. But assigning five items to request 2 will

cause request 1 to have weighted envy over one item.

Although this example discounts the ability to compute complete, WEF1 allocations

under submodular valuations with general weights, it may not exclude the ability to do so in

our setting. Perhaps it is precisely the mismatch between bundle sizes and requests’ weights

that causes difficulty. We leave a proof or counterexample for this setting for future work.
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It is rather straightforward to extend FairSequence in other ways. Montanari et al. [114]

show that to extend the picking sequence of Chakraborty et al. [37] to submodular valuations,

one can simply let requests select the expert with the highest marginal gain. They prove

that this adapted algorithm satisfies the fairness notion of WMEF(x, 1− x) for all x ∈ [0, 1].

WMEF(x, 1− x) requires that for all pairs of requests i, i′ with weights wi, wi′ , either Ai′ = ∅

or there is some g ∈ Ai′ such that

vi(Ai) + x(vi(Ai + g)− vi(Ai))

wi

≥

vi(Ai ∪ Ai′)− vi(Ai)− (1− x)(vi(Ai ∪ Ai′)− vi(Ai ∪ Ai′ − g))
wi′

.

We can adapt their algorithm to the expert assignment setting in much the same way we

adapted the weighted picking sequence of Chakraborty et al. [37].

In this chapter, we have shown how to quickly obtain fair and welfare-efficient allocations

of experts to requests. In the next section, we will start to investigate the question of how to

compute the valuation matrix V.
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CHAPTER 3

BUILDING PREDICTIVE MODELS FOR EXPERT
ASSIGNMENT

In this section, we explore how to compute the valuation matrix V ∈ Rn×m. Ideally,

we would assign experts to requests so as to optimize overall task performance, but expert

performance is unknown prior to making the assignment. We propose predicting these

performance metrics and assigning using the predictions. Using an expert-assignment task

derived from StackExchange, we show that explicitly predicting expert performance has a

large impact on assignment decisions and can improve overall welfare. We demonstrate this

claim using both theoretical bounds on statistical generalization guarantees and automated

metrics of assignment quality. This work highlights the effectiveness of predictive assignment,

and the need to collect high quality datasets linking pre- and post-allocation measures in

other important expert assignment tasks.

We frame the expert assignment task as the combination of performance prediction and

optimal assignment. We select a single target outcome of interest, which measures expert

task performance. These outcomes are labeled from among a set of outcome labels. We then

train a model to predict the outcome when assigning different experts to a new problem. By

estimating the probabilities of each outcome, we can easily trade-off between different experts

for a given task. More importantly, these probabilities help us assign many experts to many

tasks at scale.

63



# Upvotes/# Votes

Question Title & Body

Given

Proposed Answerer
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Figure 3.1: Visual display of the answer quality prediction task.

3.1 Predicting Expert Performance on StackExchange

We build a model to predict the conditional probability that a vote on a user’s answer

will be an upvote. We use features derived from the user’s past answers, as well as textual

features of the question, to build our predictive model. A visual of the prediction task is

shown in Figure 3.1.

Once we have these predictive scores, we simulate an assignment of users to questions

using the predicted scores as V.

3.1.1 Contributions

The contributions of this chapter are:

• We rigorously investigate feature importance of a logistic regression model trained to predict

probability of upvotes, showing the strength of historical performance measures in particular

(Section 3.3.2).
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• We derive theoretical high-probability bounds for assignment quality under our predictive

model (Theorem 3.3.3).

• We demonstrate experimentally that assignments made under the predictive model have

higher worst-case predicted quality and assign users with a stronger historical track record

than baselines (Section 3.4).

• We study the stability of and correlations between 11 different automated metrics of

assignment quality, enabling a nuanced understanding of the interactions between expert

assignment measures and outcomes (Section 3.4.1).

3.2 Data Availability and Causal Inference

Our ultimate goal in this chapter is to determine which features and assignment methods

improve outcomes in resource-constrained, expertise-driven tasks. Ideally, we want answers

that generalize across tasks (i.e., apply to peer review, community question answering, etc)

as well as across instances within tasks (i.e., we can expect the answers to hold for all CQA

expert-assignment instances). To address the first point, we would need to have access to

data from each of the domains in question. To address the second point, we would need to

apply methods that allow us to infer causal relationships between input and output variables.

We discuss both of these limitations here.

3.2.1 Data Availability

The purpose of this chapter is to identify the relationships between inputs and outputs in

expert assignment. However, it is difficult to obtain data comparing inputs and outputs in

our primary motivating example of reviewer assignment. Saveski et al. [143] analyzed the

connections between inputs (such as bids, TPMS/ACL scores, and keyphrase matching scores)

and outputs (reviewer self-reported expertise and confidence scores). To study the connections

between inputs and outputs, it is necessary to have access to all reviewers’ identities, as
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well as the outcomes of the review process including the review text and numerical scores.

The authors obtained access to this data by volunteering as workflow chair for multiple

years of AAAI. However, this data is not typically available to most researchers. This high

level of privacy makes it very difficult to study the impact of reviewer assignment policies.

This chapter gives a sense of the insights available to those who can fully analyze reviewer

assignment data from conferences.

3.2.2 Causal Inference

One other limitation of this chapter is the causal-explanatory power of the analyses.

In causal analysis, A/B tests are the gold standard, but are very costly. Some recent

conferences have performed A/B testing to determine the consistency of the review process

or to measure the impact of reviewer/author blinding [19, 96, 132, 158, 168]. These tests can

demonstrate causal effects, but require doubling the number of solicited reviews.

Saveski et al. [143] avoid such costly experiments by applying an off-policy evaluation

technique. They “harvest” the randomness of randomized reviewer assignment policies used by

the large AI conference, AAAI. Parts of their analysis require access to the true distribution

over assignments, which is only known to the workflow chairs of the conference. Later in this

chapter, we will apply their analysis to deterministic allocations, treating a deterministic

allocation as a trivial distribution where the deterministic allocation has probability 1 and

everything else has probability 0. Since a large part of the analysis in Saveski et al. [143]

concerns imputing bounds for the values of reviewer-paper pairs with 0 probability under the

conference’s randomized allocation, we still derive useful bounds using the imputation alone.

We develop a similar idea in Section 3.3.1, where we compute bounds on the true average

answer quality by estimating generalization error bounds on our predictor of answer quality.

This model requires us to have bounds on the ratio of the probability of seeing a request-expert
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pair in the training data vs. the probability of seeing that same pair among the assigned

pairs. This analysis is similar to that introduced by Cousins et al. [44].

In addition to the off-policy evaluation techniques used by Saveski et al. [143], we also

evaluate our assignments under multiple different proxies. In Section 3.4, we analyze different

assignment policies by computing the average of the assigned users’ past answer qualities,

the average similarity of the users’ answers with the questions, and multiple other proxies

for match quality. Although these metrics do not directly correspond to downstream answer

quality (indeed, we argue in this chapter that a fully predictive model of answer quality is

necessary), they give a more complete picture of the trade-offs between assignment approaches.

Other approaches can give us some approximation of causal effects without the costliness

of a full A/B test in a live conference, but they all have their own limitations. For example,

we might choose to hand-annotate request-expert pairs that are assigned by a proposed

assignment but were not observed in the data. However, hand-annotation can only tell us

whether we think the pair is a good match a priori; it cannot tell us the downstream quality

of the answer that the expert would provide for the request. In this chapter, we intend to

measure the effects of assignment policies on the answer quality (in reviewer assignment,

this would mean evaluating the impacts of assignments on review quality). Another option

would be to employ a simulation of the entire review process using large language models

[83]. Although intriguing, the validity of such simulations is still an open research question.

3.3 Predicting Response Quality

In addition to the expert assignment task description laid out in Section 1.2, we also

define additional task components related to the modeling of V.

Every expert g ∈M who is assigned to the request i ∈ N responds to the request. These

responses are labeled with a quality label by one or multiple individuals, perhaps users of

our community question answering platform or meta-reviewers in the context of reviewer
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assignment. To determine a final quality score for the expert’s response to the request, we

map the labels to real values and take the expected value of the labels.

Denote the set of quality labels as L .
= {l1 . . . lk}. For every request-expert pair (i, g),

there is a ground truth probability distribution over labels p(lj|(i, g)); p(lj | (i, g)) denotes the

likelihood that an annotator will assign the label lj to expert g’s response to request i. We

write l(i, g) to denote the random variable that is the label for (i, g). l(i, g) thus represents a

single draw from p(lj|(i, g)), or the label provided by a random annotator for g’s response

to i. Let function f : L→ R denote the numerical value of each label. The quality score of

expert g’s answer to task i is computed as V(i,g) = E
l∼p(lj |(i,g))

[f(l)].

The true label distribution p∗(lj|(i, g)) is often unknown prior to making our assignment

of experts to requests. We must estimate a distribution p̂(lj|(i, g)) on existing data, and

then apply that learned estimate to make our assignments. We can then optimize for any

welfare objective over V̂
.
= E

l∼p̂(lj |(i,g))
[f(l)]. In this chapter, we will mainly focus on USW

as the welfare function, turning to other objectives in Chapter 4. Recall that the space of

all constraint-satisfying allocations is denoted by Z. For this chapter, we will assume that

all requests receive the same number of experts; kN = kN = k. We select the assignment

A ∈ Z that maximizes USW(A, V̂) over Z. This problem is a totally unimodular linear

program, and thus the optimal binary solution can be found in polynomial time by relaxing

the space of A from Z to Z̃ and solving the corresponding continuous linear program [167].

The optimal continuous solution corresponds to the optimal binary solution.

To learn p̂, we estimate the model in our hypothesis class with the minimum cross-entropy

loss. The cross entropy loss of p̂ with respect to a distribution p for a single request-expert

pair (i, g) is computed as H(p(l|(i, g)), p̂(l|(i, g))) = −
∑

l∈L p(l|(i, g)) log p̂(l|(i, g)). Given a

set of t request-expert pairs T , we can compute the cross-entropy loss of p̂ with respect to p

over all T as 1
t

∑
(i,g)∈T H(p(l|(i, g)), p̂(l|(i, g))).
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We will train our model p̂ by minimizing the cross-entropy loss on a training set, against

the ground truth distribution p∗ constructed from known labellings. In the context of expertise

assignment, the training data is often not sampled i.i.d. As we will see in Section 3.3.2, in

StackExchange we typically construct features for (i, g) pairs from user g’s past answers and

the text of the question i. Therefore, when learning the model p̂(l|(i, g)) for a question i, we

use the previously-seen labelled pairs to construct the features for (i, g). This precludes some

methods for estimating the generalization error of p̂, which rely on the assumption of an i.i.d.

data distribution. However, we show that we can still obtain high quality lower bounds on

the welfare of our allocation.

For analysis purposes, we will assume there exists a value γ ∈ R such that the cross-

entropy loss cannot exceed γ for any g and i. This can be achieved by considering a smoothed

labelling, such that each label l has a minimum probability γl under both the true and

predicted probability distributions.

Example 3.3.1. In StackExchange, users upvote and downvote the answer pro-

vided by user g to question i. Answers receive multiple labels from the set

L = {Upvote,Downvote}. We assume that p(Upvote|(i, g)) can be accurately es-

timated using the empirical conditional distribution over votes. Under this esti-

mate, p(Upvote|Vote, (i, g)) is computed for g’s answer to i as #Upvotes
#Votes . Likewise,

p(Downvote|Vote, (i, g)) can be estimated as #Downvotes
#Votes . One reasonable label value

model is to set f(Upvote) = 1 and f(Downvote) = −1, similarly to how answer scores

are computed for display on the site. However, upvotes are free and only require

15 reputation to cast, while downvotes are only available to users with at least 125

reputation and cost 1 reputation to cast.a The decision-maker could therefore decide

to weight downvotes more than upvotes, using f(Upvote) = 1 and f(Downvote) = −5.
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Under this second model, if g leaves an answer for i receiving 11 upvotes and 1 downvote,

V(i,g) = E
l∼p(lj |(i,g))

[f(l)] = 11
12
(1) + 1

12
(−5) = .5.

ahttps://stackexchange.com/tour

Example 3.3.2. In reviewer assignment, we might ask meta-reviewers to label the

quality of the reviews, using the label set L = {Meets Expectations, Exceeds Ex-

pectations, Fails to Meet Expectations}. When there is only one meta-reviewer per

paper, the true probability of a label is estimated as 1 if assigned and 0 otherwise.

A conservative conference organizer may set f(Fails to Meet Expectations) = −10,

f(Meets Expectations) = .8, and f(Exceeds Expectations) = 1. Under this model,

Vi,g ∈ {−10, .8, 1} for all i ∈ N and g ∈ M , since the distribution over labels is

deterministic for each review.

3.3.1 Bounding Assignment Quality

Once we have a predictive model for p̂, we must output a decision using our predicted

values. We solve the problem using the theory of total unimodularity as previously described.

We obtain high probability bounds on the approximation error introduced from optimizing

with V̂ instead of V∗. We first evaluate our model p̂’s performance on a test set TTEST

sampled from distribution Dtest. Consider a test set TTEST containing t request-expert pairs

(i, g). The cross-entropy loss of p̂ on the test set is ξ .
= 1

t

∑
(i,g)∈TTEST

H(p∗(l|(i, g)), p̂(l|(i, g))).

Using the empirical loss ξ, we construct generalization bounds for any assignment A using

McDiarmid’s bounded differences inequality [111] and likelihood weighting [90]. We cannot

apply traditional generalization error bounds based on training set loss because our training

set often does not consist of i.i.d. samples. Given an assignment A, let TA denote the set

of (i, g) pairs such that Ai,g = 1, TA
.
= {(i, g) ∈M ×N | Ai,g = 1}. We assume that these
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pairs are also random variables drawn from some distribution DA, where the support of DA

is N ×M . We define a matrix Λ ∈ Rn×m such that

Λi,g
.
=

Pr(i,g)∼Dtest((i,g) = (i, g))

Pr(i,g)∼DA
((i,g) = (i, g))

.

For any distribution p, let H(p, p̂) ∈ Rn×m be a matrix such that

H(p, p̂)i,g = H(p(l|(i, g)), p̂(l|(i, g)).

We are now ready to state the theorem governing the generalization error of our predictor p̂.

Our generalization error will be in terms of the empirical loss ξ plus an additive error term

depending on a confidence parameter δ.

Theorem 3.3.3. For any δ ∈ (0, 1), with probability at least 1 − δ the true probability

distribution p∗ satisfies

1

kn
⟨A⊙ Λ, H(p∗, p̂)⟩F ≤ ξ +

√√√√√γ2 ln 1
δ

2

1

t
+

1

k2n2

∑
(i,g)∈TA

Λ2
i,g

.
Proof. We bound

X
.
=

1

kn
⟨A⊙ Λ, H(p∗, p̂)⟩F − ξ

=
1

kn

∑
(i′,g′)∈TA

Λi′,g′H(p∗(l|(i′, g′)), p̂(l|(i′, g′)))− 1

t

∑
(i,g)∈TTEST

H(p∗(l|(i, g)), p̂(l|(i, g))).

First, we show that E[X] = 0. Recall that for all (i′, g′) ∈ TA, (i′, g′) ∼ DA, and that for all

(i, g) ∈ TTEST, (i, g) ∼ Dtest. Thus,
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E
(i,g)∼Dtest,(i′,g′)∼DA

[X] = E
TA∼DA

 1

kn

∑
(i′,g′)∈TA

Λi′,g′H(p∗(l|(i′, g′)), p̂(l|(i′, g′)))


− E

TTEST∼Dtest

1
t

∑
(i,g)∈TTEST

H(p∗(l|(i, g)), p̂(l|(i, g)))

 .
Let

Y
.
= E

TA∼DA

 1

kn

∑
(i′,g′)∈TA

Λi′,g′H(p∗(l|(i′, g′)), p̂(l|(i′, g′)))

 .
We have that,

Y =
1

kn

∑
(i′,g′)∈TA

E
(i′,g′)∼DA

[Λi′,g′H(p∗(l|(i′, g′)), p̂(l|(i′, g′)))]

=
1

kn

∑
(i′,g′)∈TA

E
(i,g)∼Dtest

[H(p∗(l|(i, g)), p̂(l|(i, g)))]

=
1

t

∑
(i,g)∈T

E
(i,g)∼Dtest

[H(p∗(l|(i, g)), p̂(l|(i, g)))]

= E
TTEST∼Dtest

1
t

∑
(i,g)∈T

H(p∗(l|(i, g)), p̂(l|(i, g)))

 .
Now that we have shown E[X] = 0, we apply McDiarmid’s method of bounded differences to

obtain a tail bound on X [111], as X is a function of negatively-dependent random variables.

To use this method, we bound the impact of changing any of the random variables in X.

We assume that the cross-entropy loss cannot exceed γ for a single sample, so t terms in X

contribute at most γ
t

each, and each of the first kn terms contribute at most γΛi,g

kn
for each

(i, g) ∈ TA. The sum of the squared bounded differences is

γ2

1

t
+

1

k2n2

∑
(i,g)∈TA

Λ2
i,g

 ,
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which implies finally that

Pr

X ≥
√√√√√γ2 ln 1

δ

2

1

t
+

1

k2n2

∑
(i,g)∈TA

Λ2
i,g


 ≤ δ.

Once we have a candidate assignment A that maximizes USW(A, V̂), we can apply

Theorem 3.3.3 to give high probability lower and upper bounds on USW(A,V∗) by maximizing

or minimizing USW(A,V) over the high probability region defined for V by Theorem 3.3.3.

This problem is a linear program and can be solved using off-the-shelf solvers.

3.3.2 Empirical Details of Response Quality Model

We experiment on publicly available StackExchange data [154], using the cs, biology,

chemistry, and academia sites.

We represent users using their profiles and their past answers. For each question, we

compute features representing each user’s topical affinity for the question and overall answering

proficiency. Using these features, we predict labels of answer quality. We construct a train

and test set for building our predictive model of answer quality. We then evaluate the model’s

performance for labeling the test set. We also construct an assignment problem using the

set of test questions, and use our predicted distribution over labels to assign a set of users

to these questions. We evaluate the assignments using the theoretical bounds developed in

Section 3.3.1 and by comparing multiple automated metrics of assignment.

We first filter the questions and answers for quality. We select all questions that have

an accepted answer and have a score of at least 3, where the score is computed by adding

1 for each upvote and subtracting 1 for each downvote. We sort the questions by creation

time. The first 10% of questions are used to initialize user representations. The next 70% of
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Table 3.1: Dates and sizes for all StackExchanges.

Train Test
Topic First Post Last Post Start # Q’s # A’s Start # Q’s # A’s

cs 11/25/08 12/02/23 11/30/12 4831 7045 02/05/19 1182 1666
biology 05/26/11 11/30/23 09/30/12 4067 5426 04/24/18 821 1004
chemistry 02/17/12 12/01/23 03/16/14 5864 8155 08/06/19 1403 1931
academia 10/12/11 03/31/24 10/29/23 8258 20459 07/14/20 2161 5705

questions are used as the training set, and the remaining 20% as the test set. The sizes of all

4 StackExchanges, along with the dates used for train and test, are shown in Table 3.1.

We target the community votes on answers as a measure of answer quality. Because users

lose 1 reputation point for every downvote cast [155], we view downvotes as a stronger signal

of answer quality than upvotes. We set f(Upvote) = 1 and f(Downvote) = −5.

Altogether, we have 22 features employed by the model. Because we represent users using

their previous answers, the features are constructed for each question-answer pair sequentially.

Each training point consists of a question i, and a user g that responded to that question at

any point in time and has answered at least 1 previous question. Our model incorporates user

reputation, number of total views of user’s profile, number of upvotes the user has issued,

number of downvotes the user has issued, the average time taken to answer questions prior

to the current one, mean reciprocal rank for answers posted on previous questions, average

view count for questions previously answered, average absolute score for previous answers

(upvotes minus downvotes), the number of accepted answers/(total number of answers +

c), the average usefulness, relevance, and informativeness of past answers as annotated by

the Vicuna-7B large language model [170, 185], and the 0, 5, 10, 25, and 50th percentiles for
# Upvotes
# Votes on all previous answers. We refer to the latter five features as the past p(Upvote)

distribution as a shorthand, though for each answer # Upvotes
# Votes is only an estimate of the true

conditional distribution of p(Upvote|Vote, (i, g)).
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We also score all question-answer pairs for usefulness, informativeness, and relevance

using Vicuna, released August 2023. These three criteria were found to be the most highly

correlating criteria with overall answer quality in a survey of experts on community question

answering [186]. Using these annotations, for each question-answer pair we compute the

mean usefulness, relevance, and informativeness scores on the user’s past answers. These

scores are used as input features for our predictive model, but we also apply them as part of

our automated assignment evaluation.

For all question-answer pairs, we set the system prompt for the Vicuna model as (text

written inside square brackets is filled in programmatically):

I am going to prov ide you with a quest ion−answer pa i r from the [

Topic Name ] StackExchange . P lease annotate the in fo rmat ivenes s ,

r e l evance , and u s e f u l n e s s o f the answer . Your re sponse should

ra t e each o f the se three a spec t s on a s c a l e from 1−5, with 1

being the l e a s t and 5 being the most . P lease s t r u c tu r e your

re sponse by outputt ing the in fo rmat ivene s s , then the re l evance ,

and then the u s e fu l n e s s , one per l i n e . P lease add an

add i t i o na l exp lanat ion o f your r a t i n g s . In f o rmat ivene s s asks

Does t h i s answer prov ide enough in fo rmat ion f o r the ques t i on ?

Relevance asks I s t h i s answer r e l e van t to the ques t i on ?

Use fu lne s s asks I s t h i s answer u s e f u l or h e l p f u l to address the

ques t i on ? Use t h i s template f o r your output :

In f o rmat ivene s s : <Rating>

Relevance : <Rating>

Use fu lne s s : <Rating>

Explanation : <Addi t iona l Explanation>
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We then prompt the model as the user:

Question :

T i t l e : [ Question T i t l e ]

Body : [ Question Body ]

Answer :

[ Answer Body ]

We then collect and parse the response from the model to obtain the LLM annotations of the

usefulness, relevance, and informativeness of the answer.

We also include pairwise features of the question and the user, to identify content-based

similarity. We collect the set of all of the user’s previous answers. We represent each user

as a weighted bag of keyword tags on the questions they have previously answered, and we

represent the current question as a bag of tags. We can then compute the keyword similarity

score as the product of the number of matching tags times the total count of the matching

tags (following [169]). We also embed all question titles, question bodies, and answer bodies

using the SentenceTransformer multi-qa-mpnet-base-cos-v1 model [79, 135]. We then

include the mean and maximum cosine similarity between the current question title and the

titles of questions the user previously answered, as well as the mean and maximum cosine

similarity between the current question’s body and the bodies of the user’s previous answers.

We train a logistic regression model [146] on the training set to minimize cross-entropy

loss against the true distribution over labels for each user-question pair. For each pair

(i, g), we compute the empirical conditional distribution p(Upvote|Vote, (i, g)) .
= # Upvotes

# Votes

and p(Downvote|Vote, (i, g)) .= # Downvotes
# Votes as the target distribution.
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We train two baseline models that use less information about the users’ history compared

to the full logistic regression model. In some domains, like reviewer assignment, the user’s

history may be considered private. Ideally, we could obtain strong predictive performance

even without storing this private information. The Logistic Regression (Badges) model

uses a count vector of the badges awarded to the user instead of all features except for the

user-answer textual cosine similarity measures, and the tag-based similarity measure. The

User Embeddings model uses randomly-initialized user embeddings in place of all features

except for the user-answer textual similarity measures, and the tag-based similarity measure.

This model is trained using a 2-layer feed-forward neural network with sigmoid activations.

It is trained over 400 epochs using the Adam optimizer [88].

Label Classification Performance After training the logistic regression model, we

evaluate the cross-entropy loss on the test set. We also compare against three baseline

approaches. The Constant model predicts the average empirical p(Upvote|Vote, (i, g)) over

the training set for each sample in the test set. The Constant (per User) model predicts the

user’s empirical average p(Upvote|Vote, (i, g)) up to the point in time of the question. The

Similarity and Reputation model predicts a mixture of the user’s reputation and the cosine

similarity between the user’s past answers and the question text. We construct this baseline to

mirror standard expert assignment approaches, where a linear combination of topical match

scores and user characteristics are used for assignment (as in reviewer assignment, which

typically employs keyword match scores, bids, and document-based similarity scores [100]).

We set the value for each (i, g) pair to be Vi,g = λ x1(g)
maxg∈M x1(g)

+ (1 − λ) x2(i,g)
max(i,g)∈(N×M) x2(i,g)

,

where x1(g) is the reputation of g and x2(i, g) is the cosine similarity score between the

answer bodies for g and i. We set λ = .5 based on initial experiments varying λ over [0, 1] in

increments of 0.1. Note that order statistics of the user’s empirical conditional probability of

receiving an upvote are also included as features in our logistic regression model.
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Table 3.2: Predictive performance of each model on the test set for cs.

Model XE (↓) τ (↑) ρ (↑) P@100 (↑) AUROC (↑)

Constant .0890 – – .94 .5000
Constant (per User) .1028 .0850 .0866 .94 .5308
Similarity and Reputation – .0828 .1029 .98 .6221

Logistic Regression (Badges) .0922 .1001 .1245 .95 .6461
User Embeddings .1054 .1331 .1653 .98 .6964

Logistic Regression (All) .0802 .1472 .1824 .97 .7155

Table 3.3: Predictive performance of each model on the test set for biology.

Model XE (↓) τ (↑) ρ (↑) P@100 (↑) AUROC (↑)

Constant .1470 – – .88 .5000
Constant (per User) .1688 .0381 .0399 .87 .5150
Similarity and Reputation – .0759 .0962 .85 .5771

Logistic Regression (Badges) .1531 .0987 .1253 .9 .6036
User Embeddings .1613 .1046 .1323 .9 .6070

Logistic Regression (All) .1363 .1225 .1547 .9 .6221

Tables 3.2 to 3.5 report, for all 4 StackExchanges, the cross-entropy loss, precision at 100

(P@100), and the area under the receiver operating characteristic curve (AUROC) of the

predictive models. P@100 and AUROC are computed assuming that a positive example is

one with no downvotes, and a negative example is one with at least one downvote. We also

compute Kendall’s τ and Spearman’s ρ statistics between the ranking produced by each model

and the true ranking over all test examples by p(Upvote|Vote, (i, g)). All τ and ρ statistics

are statistically significant with a p-value of less than .001. Our trained model outperforms

all the baselines, but the predictive models that use only badges or user embeddings are close

to the performance of the full predictive model.
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Table 3.4: Predictive performance of each model on the test set for chemistry.

Model XE (↓) τ (↑) ρ (↑) P@100 (↑) AUROC (↑)

Constant .1408 – – .86 .5000
Constant (per User) .1582 .1319 .1364 .88 .5545
Similarity and Reputation – .1246 .1563 .97 .6455

Logistic Regression (Badges) .1624 .0906 .1136 .94 .6025
User Embeddings .1381 .1078 .1351 .97 .6250

Logistic Regression (All) .1177 .1767 .2206 .96 .7056

Table 3.5: Predictive performance of each model on the test set for academia.

Model XE (↓) τ (↑) ρ (↑) P@100 (↑) AUROC (↑)

Constant .2403 – – .77 .5000
Constant (per User) .2848 .0400 .0437 .77 .5089
Similarity and Reputation – -.0004 -.0003 .69 .4878

Logistic Regression (Badges) .3255 .0480 .0640 .67 .5292
User Embeddings .2860 .1199 .1546 .8 .5969

Logistic Regression (All) .2403 .1060 .1384 .83 .5708

Feature Importance In this section, we study the importance of different features for

predicting p(Upvote|Vote, (i, g)) using our full-featured logistic regression model. We only

study feature importance on the cs StackExchange, since Shapley value computation is very

expensive. We investigate the coefficients of the logistic regression model in Figure 3.2a.

Figure 3.2b shows the feature importance for each feature in our model using the exact

computation of the Shapley value [150]. The Shapley value of a feature x measures the

average marginal decrease in test-set cross entropy loss when training the logistic regression

model using a set of features S ∪ {x} compared to using the set of features S \ {x}.

The top three features by both measures are measures of quality for the user’s previous

answers. Distributional measures of p(Upvote|Vote, (i, g)) over the user’s past answers are
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(a) Logistic regression model coefficients.
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(b) Shapley values for features, measured as
the average marginal contribution of the fea-
ture to decreasing cross entropy loss on the
test set.

Figure 3.2: Logistic regression model coefficients and Shapley values on the test set for cs.

incredibly important for predicting future p(Upvote|Vote, (i, g)). In addition, the ratio of

accepted answers written by the user to total answers written by the user, as well as the

mean reciprocal rank of answers written by the user are both very important.

All features contribute meaningfully to reducing cross-entropy loss on the test set. This

finding should encourage decision makers to collect and leverage as much information as is

available in constructing predictive models of performance.

One likely explanation for the relative unimportance of topic-based features is the (extreme)

sampling bias in StackExchange data. Our (i, g) pairs consist only of answers that were

actually submitted on the website. If a user g does not have the expertise or interest to answer

question i, he or she simply will not answer that question. Topical similarity is likely more

useful for predicting whether a user g would naturally answer question i. These measures

are less useful in determining the probability that user g provides a high quality answer to

question i, conditioned on the fact that they chose to answer the question.

80



3.4 Making and Evaluating Assignments using the Predictive Model

We also use the test set to evaluate the overall assignment quality when assigning

for predicted answer quality. We assume that all questions in the test set are received

simultaneously, immediately following the end of the time period of the training set. Thus,

each user’s past answers (used in computing user and pairwise user-task features) are limited

to only the answers to the first 80% of questions by time of posting. This difference from

the training set allows us to simulate testing on multiple questions without interdependence

between questions, and shows the trade-offs required when assigning users with limited

resources to many questions.

Overall, to evaluate assignments we include n = 1,402 questions (our set of requests N)

and the m = 220 users who answered any of those questions and have answered at least one

question before (our set of experts M). For robustness, we take 1,000 samples of 60% of the

questions and 60% of the users, and report the distributions of all evaluation metrics across

all 1,000 runs. For each assignment, we evaluate 12 metrics: p̂(Upvote|Vote, (i, g)) under our

predictive model, worst-case p(Upvote|Vote, (i, g)) according to Theorem 3.3.3 with δ = .1,

5th percentile and median of user’s historical p(Upvote|Vote, (i, g)), number of user-question

pairs that are observed in reality, average cosine similarity between user’s past answers and

question body, average keyword matching score, average assigned reputation score for assigned

users, true p(Upvote|Vote, (i, g)) for recovered pairs, and the average usefulness, relevance,

and informativeness for assigned users’ past answers. These metrics capture a wide range of

automated measures for assignment quality, including topical similarity between the users

and questions, and the users’ propensities to leave satisfying answers.

We compare the assignment made using our predictive model to baseline assignments

made using the scores from the Similarity and Reputation baseline. In addition, we also

compute 100 random values for each (i, g) pair drawn from the uniform distribution U[0,1].
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Figure 3.3: Comparison of all models on p̂(Upvote|Vote), on all 4 StackExchange websites.

We set the number of experts per request i to kN
i = kN

i = k = 2, and the number of requests

per expert g to kM
g = 0 and kM

g = 26 (twice the smallest integer such that mkM
g ≥ nkN

i ).

To compute the worst-case bounds for the predictive assignment model (according to

Theorem 3.3.3), we set δ = .1. We estimate the cross entropy loss on the 1,666 labeled

question-answer pairs in the test set. We estimate the distribution Dtest over the test set

by fitting a 2-component principal component analysis on the test data and then applying

kernel density estimation on the transformed features. We also estimate the distribution DA

over the pairs in TA for each assignment A using the same procedure.

In Figures 3.3 to 3.9, we demonstrate the value of 6 metrics of interest over 1,000 repeated

experiments for the predictive assignments, the Similarity and Reputation baseline with

λ = .5, and random assignment. Each figure includes results for a single metric for all 4

StackExchange websites. For each of the 1, 000 experiments, for each assignment method, we

compute the average of the value of the metric over all pairs assigned by that method. We

then report the average value and error bars over a 95% confidence interval for the average

(over runs) of the average metric value (over assigned pairs).

Figure 3.3 shows the average value of the predicted score, estimated using our logistic

regression model with all the features. It is not surprising that the assignment using the

predictive model is optimal on this measure, but the degree of suboptimality of the other
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Figure 3.4: Comparison of all models on the statistical lower bound on the true p(Upvote|Vote)
at 90% confidence, on all 4 StackExchange websites.
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Figure 3.5: Comparison of all models on median of users’ past p(Upvote|Vote), on all 4
StackExchange websites.

assignment methods is quite surprising, with the non-predictive baseline showing between

15 − 30% decrease in predicted performance. In Figure 3.4, we show the the lower bound

computed using Theorem 3.3.3. The patterns in these results largely reflect the patterns

of Figure 3.3. Notably, the non-predictive model underperforms random assignment on the

academia StackExchange.

Figures 3.5 and 3.6 show the performance of each assignment method over two important

metrics of historical user performance. Figure 3.5 shows that the full predictive model

and the trained user embedding model strongly outperform the other approaches on the

average of the user’s median past p(Upvote|Vote). In addition, the non-predictive baseline

actually under-performs random assignment on this metric. Figure 3.6 shows the performance
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Figure 3.6: Comparison of all models on average value of users’ past “Usefulness” score, on
all 4 StackExchange websites.
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Figure 3.7: Comparison of all models on number of assigned pairs that were observed in
reality, on all 4 StackExchange websites.

measured as the average of the LLM-annotated “Usefulness” scores over each assigned user’s

past answers. This metric is also a measure of historical performance of the assigned users.

Again, we see that the full predictive model outperforms all models, and the user embedding

model does second-best, except in the chemistry StackExchange. Figure 3.2 showed that

under both feature importance measures we considered, distributional measures of past user

performance were the most important features for our predictive model. The results in

Figures 3.5 and 3.6 further corroborate this claim; they indicate that the predictive model

assigns users with significantly higher historical performance measures.

The final set of plots we analyze, Figures 3.7 and 3.9, demonstrate the two “ground truth”

metrics: number of observed pairs recovered (Figure 3.7), and observed p(Upvote|Vote) for
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Figure 3.8: Comparison of all models on average cosine similarity of user’s past answers to
the question body, on all 4 StackExchange websites.
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Figure 3.9: Comparison of all models on the true p(Upvote|Vote) estimated on recovered
pairs, on all 4 StackExchange websites.

those pairs. Both metrics should be considered somewhat skeptically; although the users

who actually answer a question are often qualified to do so, observing a user-question pair

is neither necessary nor sufficient to indicate a good match. In addition, the constraints

imposed on assignments limit the number of observed pairs we can recover, since a small

number of users answer a large number of questions. The p(Upvote|Vote) over observed pairs

is a useful measure, but the number of observed pairs is only a small fraction of the number

of assigned pairs. Nonetheless, we see some interesting trends in these plots. Figure 3.7 shows

that the non-predictive baseline outperforms the predictive model on recovering observed

pairs, while the predictive model strongly outperforms the other 3 models. This likely derives

from the distribution shift between the training and test sets. Our models are trained on
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the observed user-question pairs, which generally have higher content-based similarity than

independently selected users and questions. Thus our predictive models likely do not place

as much importance on content-based similarity as the baseline, though clearly some content-

based similarity is important in making assignments. The plots of average cosine similarity

between the assigned user’s past answers and the question body (Figure 3.8) shows a similar

trend, further supporting this theory. Figure 3.9 shows the true value of the p(Upvote|Vote)

over the pairs which have annotations. Our predictive model slightly underperforms on this

metric on the cs StackExchange, but shows consistently high performance across all datasets.

Across all metrics of interest, the academia StackExchange shows different trends than

the other 3 datasets. Specifically, the non-predictive baseline is much worse relative to

the predictive model on this dataset than others, when measured by p̂(Upvote|Vote), true

p(Upvote|Vote) on observed pairs, and historical user performance. We also see the predictive

model has a much lower average cosine similarity score on this dataset. These results can

have a huge bearing on expert assignment systems; moving forward, our predictive models of

fit should be designed to reweight feature importances differently depending on the subject

matter. Conferences that have many different types of contributions may be most impacted;

a position paper, a paper introducing a new benchmark, a theoretical paper, and a paper

introducing a novel machine learning model may all require different feature weights when

assigning reviewers. Although our predictive model does not account for this variation in

feature importance across subject areas, we suggest this as a major direction for future work

in expertise modeling.

We also apply the analysis tools presented by Khan et al. [87], Saveski et al. [143]. Specifi-

cally, for each assignment, we compute the upper and lower bounds for average p(Upvote|Vote)

over all pairs (observed and unobserved) under the assumption that p(Upvote|Vote) is a

monotonically non-decreasing function of the answer-question similarity score, the keyphrase

matching score, and user reputation. Saveski et al. [143] use probabilistic reviewer assign-
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ments and reweight quality scores for observed and imputed pairs based on the marginal

probability of assignment. In our case, both the observed and proposed assignments are

deterministic, so we apply their bounds under the trivial deterministic distributions. After

computing the upper and lower bounds, we determine for all 1000 runs when the lower bound

for some assignment algorithm exceeds the upper bound for another assignment algorithm.

In Figure 3.10, we show the percentage of runs in which each algorithm dominates each

other algorithm in this way. Overall, the full predictive model and the baseline model with

λ = .5 are the only two models to dominate other approaches a non-trivial number of times.

We see that the predictive model dominates the other approaches more frequently than the

baselines on the cs, biology, and chemistry StackExchanges. However, the baseline with

λ = .5 outperforms the predictive model on the academia StackExchange according to this

metric. We performed similar experiments using the Lipschitz continuity assumption from

Khan et al. [87], Saveski et al. [143], with multiple choices for the Lipschitz constant selected

using the aforementioned works’ methodology. Although these bounds were often tighter

than the monotonicity-based bound, we found that the bound rarely distinguished between

any two approaches.

Appendix A contains the analysis of several additional metrics, including the 5th percentile

of historical p(Upvote|Vote) for assigned users, keyword matching score, user reputation, and

LLM-annotated “Relevance” and “Informativeness” of assigned users’ past answers.

Overall, we find that the assignments made using the predicted answer scores strongly and

robustly outperform most baselines on expected and worst-case predictive score, order statistics

of user’s past probability of upvote, and assigned users’ average usefulness, informativeness,

and relevance over past answers. However, the baseline using trained user embeddings

performs very well on the objectives that measure user behavior without considering content

similarity.
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Figure 3.10: Percentage of time that the assignment approach on the y-axis has a higher
lower bound than the upper bound for the assignment approach on the x-axis.

3.4.1 Metric Correlation Analysis

To further understand the trade-offs between evaluation metrics, we rank the assignment

approaches using each metric for each of our 1,000 experiment repetitions. We then study

the correlation between rankings over assignments produced by each metric. Correlations

and p-values for all four StackExchanges are displayed in Appendix A.1, along with a more

detailed explanation of the procedure for calculating these correlations.

The rankings produced under p̂ are generally highly correlated with the rankings produced

by order statistics of the user’s past p(Upvote), user reputation, and the average LLM-

annotated usefulness, relevance, and informativeness. This further bolsters our finding in
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the previous section that these historical features are highly informative for predicting the

future probability of an upvote. The metric producing rankings most correlated with the

rankings produced by the Recovered Pairs metric (the number of observed user-question

pairs recovered by the assignment) is the Keyword Match Score metric, suggesting again that

textual similarity is predictive of whether a user would naturally answer a question (but this

does not mean that this feature is predictive of their response quality given that they chose

to answer this question). Finally, we see that the similarity score produces rankings that

are generally negatively correlated wth rankings produced by measures of user competence

(reputation with correlation −.7, and order statistics of past probability of upvote with

correlation −.7 and −1.0). This dynamic suggests that perhaps assignments yielding content

similarity may sacrifice user competence. StackExchange uses tags to recommend questions

to users, and conference management platforms like Microsoft CMT compute keyword-based

similarity measures, so this dynamic is incredibly worthy of further study.

3.5 Discussion

An ideal evaluation setting would make multiple assignments, have the assigned people

write a response, and see how many upvotes they receive. It is not currently possible to run

this experiment through StackExchange, and such an experiment would be very expensive in

reviewer assignment. However, our 11 automated metrics demonstrate that the predictive

model incorporates multiple elements of user suitability in a satisfying way.

Our approach requires access to historic behavior for every user. While this is routine for

StackExchange, this information is harder to access in privacy-sensitive areas like peer review.

Reviewers may not be comfortable with sharing review performance history with systems like

CMT or OpenReview without additional assurances, and this persistent state would require

additional consent. However, many conferences have persistent organizing teams that retain

access to review data from prior years, and with proper consent these conferences could simply

89



make use of this already accessible information. Multiple research studies have expressed

concerns that high-quality data about peer review is incredibly difficult to obtain [42, 113].

We hope that the current work encourages further study of the connections between input

and output measures in other areas of expert assignment, and that conferences in particular

will be encouraged to cooperate further with researchers to understand how decisions made

during reviewer assignment impact downstream metrics of review quality.

3.6 Conclusion

We find defining metrics of interest and then optimizing for the predicted values of those

metrics is more effective than optimizing for variables that are available prior to assignment.

We give probabilistic bounds on the quality of such assignments, ensuring that the metric is

optimized with high probability. Historic measures of answer quality prove to be the most

important predictors of future answer quality; this finding can have important implications

for expert recommendation in StackExchange as well as reviewer assignment for peer review.

Although different measures of assignment quality can result in different results, the predictive

model-based assignments outperform baseline approaches across a wide range of metrics. The

correlations between the rankings produced by different metrics reveal important connections

between these competing or complementary objectives; notably, we find some indication

that assigning for content similarity may conflict with assigning for user competency. These

trade-offs can be incorporated directly into a predictive model, such as the one proposed in

the current study.
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CHAPTER 4

ROBUST EXPERT ASSIGNMENT UNDER UNCERTAINTY

In Chapters 2 and 3, we have largely treated the valuation matrix V ∈ Rn×m as a single,

fixed value. However, in the real world most methods for estimating V are noisy. Chapter 3

shows that predictive models of answer quality in StackExchange sometimes outperform

linear combinations of simple features, but neither model can predict the future perfectly.

In reviewer assignment, reviewers can only bid on a small number of papers, and textual

similarity models and subject-area matching are inherently noisy estimators.

In the remainder of this thesis, we develop principled methods of handling uncertainty

around the valuations V. The methods laid out in this chapter optimize utilitarian (USW)

and egalitarian welfare (GESW). Valuations V are not known in advance, but are instead

observed after realizing the allocation. Optimizing over estimates of V requires trading-off

between mean valuations and their predictive variances. We discuss these trade-offs under

two paradigms for preference modeling – in the stochastic optimization regime, the optimizer

has access to a probability distribution DV over V, and in the robust optimization regime

they have access to an uncertainty set V containing the true valuations with high probability.

We discuss utilitarian and egalitarian based objectives, and we explore how to optimize for

them under stochastic and robust paradigms. The approaches enable scalable constrained

resource allocation under uncertainty for many different objectives and preference models.
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4.1 The Importance of Considering Uncertainty

We briefly outline the case for robustly incorporating uncertainty during optimization,

using our primary expert assignment problem of interest, reviewer assignment for peer-

reviewed conferences. Uncertainty in affinity score computation is a major source of error

in reviewer assignment [100]. When we assign a reviewer to a paper, we are interested in

ensuring the quality of the future review, which is fundamentally noisy. Because of this

unpredictability, conferences typically construct affinity scores that reflect reviewer expertise

and interest via four main sources of information. These sources include (a) subject-area

matching (SAM) scores or keyword-based matching, where reviewer-provided areas of expertise

are compared against keywords submitted by paper authors, (b) textual similarity scores,

often implemented by the well-known Toronto Paper Matching System (TPMS) [38] or ACL

scores [117], (c) bidding, where reviewers express their explicit ability and desire to review

papers, and finally (d) recommendations, through which program committee members may

suggest reviewers for papers. The overall affinity scores are typically computed as a linear

combination of these four scores [121, 138]. Recent conferences such as AAAI 2021 took a

similar approach, linearly combining TPMS scores, ACL scores, and SAM scores, and raising

the sum to some power based on the reviewer bids [100].

Each of these common affinity score components can be missing or inaccurate. State-of-

the-art document similarity measures disagree with expert judgments 9% of the time for

easy examples and 45% of the time for hard examples [120, 159], and nearly 40% of TPMS

scores were completely missing in AAAI 2021 [100]. Although the AAAI 2021 organizers

do not explain why so many TPMS scores are missing, missing scores occur for several

reasons, including reviewers opting out of the system or providing insufficient or empty

publication records. Between 5% and 15% of papers in major AI conferences receive fewer

than three positive bids, but there is evidence that many missing bids would be positive

if collected [60, 112, 141]. Out of 2, 425 papers submitted to NeurIPS 2016, 816 or about
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1/3 of all papers had fewer than 6 positive bids. Since papers required 6 reviewers at this

conference, this is a shockingly high rate. Although no systematic study has been performed

on keyword-based similarity scores, keyword matching accuracy depends on authors and

reviewers using consistent terminology, and subtleties are invariably lost in the process. Even

reviewers directly suggested by knowledgeable editors or the paper authors have been shown

to perform surprisingly poorly on average, as measured by third-party annotators via the

Review Quality Index [144, 171], showing that recommendations can be noisy as well. Finally,

experts often disagree when evaluating the quality of peer reviews, showing that in addition

to the multiple sources of input uncertainty there is also uncertainty in the evaluation of

outcomes [68].

The above discussion helps us understand why we might consider optimizing with uncer-

tainty in mind. The following example demonstrates numerically how much we lose when we

do not account for uncertainty.

Example 4.1.1 (The Importance of Considering Uncertainty). Consider a simple two-

request, two-expert instance, where each request needs exactly one expert, and either

likes (value 1) or dislikes (value 0) each expert. Request values over experts are Bernoulli

random variables, where Pr[V1,1 = 1] = 0.8,Pr[V1,2 = 1] = 0.9,Pr[V2,1 = 1] = 0.5, and

Pr[V2,2 = 1] = 0.8. If we maximize the sum of values over the expected value of each

variable, we would assign g1 to i1 and g2 to i2, for a total expected value of 1.6. However,

consider instead the objective of Conditional Value at Risk, which is the conditional

expectation over the left tail of the distribution at a certain percentile. When we

make the expectation-maximizing assignment, then Pr[USW(A,V) = 0] = 0.04 and

Pr[USW(A,V) = 1] = 0.32. However, if we assign g2 to agent i1 and item g1 to agent

i2, we have that Pr[USW(A,V) = 0] = 0.05 and Pr[USW(A,V) = 1] = 0.5. This
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means that the conditional expectation of welfare at the 30th percentile is higher if we

assign g2 to i1 and g1 to i2 (it is .32 in the first case and .5 in the second case). If we

want to retain welfare in the face of uncertainty, we might well choose to maximize

this quantity rather than the expectation of the welfare.

4.2 Our Contributions

We study the broad problem of fair and efficient expert assignment under preference

uncertainty. Specifically, we develop methods to efficiently optimize utilitarian and egalitarian

objectives using the robust approach [15, 18, 70] and CVaR approach [140].

For robust optimization, we construct an uncertainty set containing the true preferences

with high probability, then maximize the minimum welfare over the uncertainty set. This

model is appropriate when building a predictor with statistical error bounds, but without

making any assumptions on the full probability distribution over preferences. Uncertainty sets

generalize probability distributions — while it is possible to construct an uncertainty set from

a probability distribution, non-Bayesian models will frequently not specify full probability

distributions. In these cases, worst-case guarantees over an uncertainty set are quite natural.

For utilitarian and egalitarian welfare functions, we robustly maximize welfare over such

uncertainty sets. We provide numerous examples of uncertainty sets, starting with axis-

aligned, hyperrectangular uncertainty sets, and spherical and ellipsoidal uncertainty sets.

Theorems 4.4.7 and 4.4.8 offer detailed end-to-end examples of construction of ellipsoidal

uncertainty sets using bounds on the square error of an estimator from partially-observed

or historical data. We also present a calculus of uncertainty sets, enabling construction of

complex and highly informative uncertainty sets from simple components. Our results are

agnostic to the valuation model; decision-makers can define valuations arbitrarily, so long as

they can be estimated for all request-expert pairs, and sampled for some pairs.
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We show that maximizing the minimum USW is NP-hard over convex uncertainty sets

(Theorem 4.4.11). We also present an approximation algorithm that applies to any convex

uncertainty set (under any welfare function), as long as worst-case welfare can be efficiently

computed (Section 4.4.2). The algorithm, adversarial projected sub-gradient ascent, applies

randomized rounding methods to a convex relaxation of the discrete optimization problem, and

we analyze both the optimization error due to convex programming methods and randomized

rounding, and the maximin error due to operating with an uncertainty set, rather than

known valuation V. We give bounds on the true welfare relative to the maximin welfare

solution (Proposition 4.4.1), and explore the integrality gap under USW (Proposition 4.4.2).

In addition to our general approach, we discuss specific cases where a more efficient

solution exists. When the uncertainty sets are linear we efficiently compute the exact

optimal maximin allocations for both utilitarian and egalitarian welfare in polynomial time

(Corollary 4.4.16 and Corollary 4.4.20). Under ellipsoidal uncertainty sets, we apply an iterated

quadratic programming approach for utilitarian and egalitarian welfare (Corollary 4.4.17 and

Corollary 4.4.21).

When the market designer can construct a full probability distribution over preferences,

we consider stochastic optimization using the robustness concept of Conditional Value at

Risk, or CVaR [140]. This approach selects an allocation that maximizes the conditional

expectation of welfare over the left tail of the distribution. We largely approach CVaR

objectives using sampling, then solving the resulting linear program (LP). Section 4.5 deals

with CVaR of welfare.

Our results are summarized in Table 4.1. Robust optimization under a wide range of

convex uncertainty sets and welfare functions can be solved using adversarial projected

sub-gradient ascent. Table 4.1 outlines more efficient approaches that work in certain settings.

We complement our theoretical results with an empirical exploration of uncertainty

set/probability distribution construction and robust/stochastic optimization. We first show
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Table 4.1: Summary of optimization algorithms for efficiently computing utilitarian and
egalitarian welfare under different robustness concepts. Green highlights indicate problems
which require solving a single linear program (low difficulty). Yellow highlights indicate
solving a small number of linear or quadratic programs (medium difficulty). Red highlights
indicate solving numerous quadratic programs or arbitrary concave programs.

Robustness Concept

Robust CVaR

Linear One Ellipsoid ℓ Ellipsoids Any (approx.) Gaussian

Utilitarian LP Reduction
(Coro. 4.4.16)

Iterated QP
(Coro. 4.4.17)

Projected SGA
(Prop. 4.4.15)

Sampling+LP
(Prop. 4.5.1)

Projected GA
(Prop. 4.5.6)

Egalitarian LP Reduction
(Coro. 4.4.20)

Iterated QP
(Coro. 4.4.21)

Projected SGA
(Prop. 4.4.19) Sampling+LP (Prop. 4.5.7)

Monotone,
Concave

Adversarial Projected SGA
(Sec. 4.4.2)

Sampling + Concave Program
(Sec. 4.5)

a simulation demonstrating the negative consequences faced by an uncertainty-unaware

approach. In this simulation, we create a scenario where we know the true V, and demonstrate

that the adversarial projected sub-gradient ascent algorithm can maintain high true welfare,

while the uncertainty-unaware optimization rapidly loses true welfare when noise increases.

Finally, we investigate multiple types of uncertainty sets and distributions for two reviewer

assignment settings. Using publicly available data from five recent iterations of ICLR, we show

that the adversarial projected sub-gradient ascent algorithm can maintain high worst-case

USW. We also study bid data from AAMAS 2015, 2016, and 2021, where we estimate missing

bids using both logistic and Gaussian process matrix factorization, and optimize under both

the robust and stochastic regimes.

4.3 Optimizing Allocations under Uncertainty

We consider two main approaches to dealing with uncertainty: the robust optimization

approach and the Conditional Value at Risk approach.
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In the robust approach, we obtain an uncertainty set V that contains the true agent

valuations v∗ (recall that v∗ denotes the row-major vectorization of V∗) with probability at

least 1− δ for some confidence parameter δ ∈ [0, 1). We then optimize the welfare (for any

welfare function W ) corresponding to the worst valuation matrix in the uncertainty set, i.e.,

max
a∈Z

min
v∈V

W (a,v). (4.1)

This approach is appropriate when we do not have access to a full distribution Dv but have

error bounds on v∗, which define the uncertainty set V .

When we have access to a full distribution Dv over a random variable v ∈ [0, 1]nm, we

apply a stochastic approach instead. We compute the welfare distribution and optimize the

conditional expectation over an α-percentile of the welfare or Conditional Value at Risk at

α (CVaRα), where the confidence parameter α is determined by the market-maker. This

approach is also referred to as the soft-robust approach. Suppose that Dv represents the

probability distribution of the random valuation matrix V and α denotes the percentile of

the welfare we wish to optimize. For any α ∈ (0, 0.5), CVaRα is defined as Ev∼Dv [X | X ≤

να(W ;a,v)] where να(W ;a,v) denotes the α-percentile of welfare. We thus seek to solve

max
a∈Z

E
v∼Dv

[X | X ≤ να(W ;a,v)] (4.2)

This approach is only appropriate when Dv is fully known, and Ev∼Dv [X | X ≤

να(W ;a,v)] can be efficiently computed and optimized.

4.4 Robust Optimization

In this section, we investigate various methods of computing uncertainty sets. We then

study how to optimize USW and GESW over multiple uncertainty set structures.
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We begin with a simple observation relating the worst-case welfare over V for any

assignment A to the true welfare of A with V∗. Proposition 4.4.1 shows the minimum welfare

of an assignment A over an (ε, δ) uncertainty set V relates additively to the true welfare of

A. The tightness of the approximation depends on the L1 diameter of the set V and the

additive L1 error ε allowed for the uncertainty set.

Proposition 4.4.1 (Relating True and Worst-Case Welfare over V). Suppose V is a (ε, δ)

uncertainty set with ∥V −V′∥1 ≤ L for all V,V′ ∈ V, and the true affinity score matrix is

labeled V∗. Consider any assignment A ∈ Z. Then with probability at least 1− δ,

USW(A,V∗)− L+ε
n
≤ inf

V∈V
USW(A,V) ≤ USW(A,V∗) + ε

n
.

Proof. For the right hand side, note that with probability at least 1−δ there exists some V∗
ε ∈

V with ∥V∗
ε −V∗∥1 ≤ ε. Let V′ = argminV∈V USW(A,V). By definition, USW(A,V′) ≤

USW(A,V∗
ε). If USW(A,V∗

ε) ≤ USW(A,V∗), we have the desired inequality. Otherwise, we

can apply the fact that USW(A,V∗
ε)−USW(A,V∗) = USW(A,V∗

ε−V∗) ≤ 1
n
∥V∗

ε−V∗∥1 ≤
1
n
ε, where the second-to-last inequality holds since every entry of A is in {0, 1}.

To derive the left hand side, we will aim to bound USW(A,V∗)−USW(A,V′) where V′ =

argminV∈V USW(A,V). Again with probability at least 1− δ there exists some V∗
ε ∈ V with

∥V∗
ε −V∗∥1 ≤ ε. So USW(A,V∗)−USW(A,V∗

ε) = USW(A,V∗−V∗
ε) ≤ 1

n
∥V∗−V∗

ε∥1 ≤ ε
n
.

Applying similar logic, we can bound USW(A,V∗
ε)− USW(A,V′) = USW(A,V∗

ε −V′) ≤
1
n
∥V∗

ε −V′∥1 ≤ L
n
.

Proposition 4.4.1 implies that if we aim for low L1 diameter uncertainty sets V, we can

approximately optimize true utilitarian welfare using the robust objective. We show a stronger

result later (Theorem 4.4.3); the true welfare of the robust optimization result is also close to

the maximum welfare we could have achieved had we known V∗.
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In general, we will solve Equation (4.1) by relaxing the binary decision space Z to Z̃,

solving for some continuous assignment Ã ∈ Z̃, and then rounding to a selected integral

allocation AROUND. That is, we first solve

max
Ã∈Z̃

min
V∈V

W (Ã,V), (4.3)

then round Ã to AROUND in such a way that E[AROUND] = Ã and AROUND ∈ Z. Aside

from the optimization error of any algorithm used to obtain Ã, there are two more error

sources: maximin error for working under uncertainty, and rounding error.

The integrality gap of Equation (4.1) can be quite large; similarly, the L1 difference

between a rounded assignment AROUND ∈ Z and a continuous assignment Ã ∈ Z̃ may be

quite large as well. Surprisingly, we show that when the welfare function is USW, although

the integrality gap is large, with high probability this does not translate to a large amount of

suboptimality in the true USW of the rounded solution AROUND. Intuitively, whenever the

maximin optimal continuous solution has a high L1 distance from any valid binary integer

assignment, the decisions made during rounding cancel out on average, and have relatively

little impact on the true welfare of the assignment.

Proposition 4.4.2 (L1 Distance to Integral Solution). Suppose an unrounded assignment Ã

and a randomized rounding AROUND of Ã such that E[AROUND] = A. Then the expected L1

deviation of the assignment due to rounding obeys

EAROUND [∥AROUND − Ã∥1] = 2
(
∥Ã∥1 − ∥Ã∥22

)
≤ nm− 2

∥∥1
2
− Ã

∥∥
1
.

Although the assignments may need to be rounded quite significantly, Theorem 4.4.3 shows

that the rounded assignment has near-optimal true welfare (in expectation). Theorem 4.4.3

also allows for ε error in the discrete/continuous maximin assignments. We define Aε ∈ Z,
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representing any ε-optimal discrete solution to Equation (4.1) and Ãε ∈ Z̃, any ε-optimal

continuous solution to Equation (4.3). Aε and Ãε are formally defined by the properties

max
A∈Z

inf
V∈V

USW(A,V)− inf
V∈V

USW(Aε,V) ≤ ε & max
Ã∈Z̃

inf
V∈V

USW(Ã,V)− inf
V∈V

USW(Ãε,V) ≤ ε.

Theorem 4.4.3 (Maximin and Integrality Gaps in Welfare). Suppose V is an (ε, δ) uncertainty

set with L1 diameter L. Let Aε denote an ε-optimal discrete RAU solution, and Ãε denote

an ε-optimal continuous RAU solution. Let AROUND denote the random variable that arises

from applying the randomized rounding procedure Round to Ãε, and assume that Round

preserves expectation, i.e., E[AROUND] = Ãε. Suppose also that the true valuations are V∗,

and denote the optimal solution A∗ .
= argmaxA∈Z USW(A,V∗). The following then hold.

1. Maximin Gap: Pr
(
USW(A∗,V∗)− USW(Aε,V∗) > ε+ 2ε+L

n

)
< δ.

2. Expected Regret: Pr
(
USW(A∗,V∗)− EAROUND [USW(AROUND,V

∗)] > ε+ 2ε+L
n

)
< δ.

3. Probabilistic Regret: Pr
(
USW(A∗,V∗)− USW(AROUND,V

∗) > ε+(2ε+L)/n
δ′

)
< δ′ + δ.

Proof. We begin with the maximin gap bound. With probability at least 1 − δ, there is

some V∗
ε ∈ V such that ∥V∗

ε −V∗∥1 ≤ ε, and thus USW(A∗,V∗) ≤ USW(A∗,V∗
ε) +

ε
n

(by

Proposition 4.4.1). Likewise, USW(Aε,V∗
ε) ≤ USW(Aε,V∗) + ε

n
. Together, these imply

USW(A∗,V∗)− USW(Aε,V∗) ≤ USW(A∗,V∗
ε)− USW(Aε,V∗) + ε

n

≤ USW(A∗,V∗
ε)− USW(Aε,V∗

ε) + 2 ε
n
.

Now, USW(A∗,V∗
ε) ≤ max

A∈Z
inf
V∈V

USW(A,V) + L
n
, and by definition

USW(Aε,V∗
ε) ≥ inf

V∈V
USW(Aε,V),
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thus

USW(A∗,V∗
ε)− USW(Aε,V∗

ε) + 2
ε

n
≤ max

A∈Z
inf
V∈V

USW(A,V)− inf
V∈V

USW(Aε,V) + 2ε+L
n
.

The definition of Aε implies max
A∈Z

inf
V∈V

USW(A,V)− inf
V∈V

USW(Aε,V) ≤ ε.

To obtain the expected regret over AROUND, we first apply the two facts that E[AROUND] =

Ãε and USW is a linear objective function. We now must bound USW(A∗,V∗)−USW(Ãε,V∗),

which we can do using the same proof we used to obtain the maximin gap above (replacing

Aε and Z with Ãε and Z̃).

Finally, the probabilistic worst-case regret bound follows from Markov’s inequality.

Note that the distribution for the probabilistic regret is over the randomness of the

rounding procedure, while all bounds in Theorem 4.4.3 are probabilistic with respect to δ of

the uncertainty set V .

4.4.1 Building Uncertainty Sets

Now that we have explored the structure of the robust optimization problem, we discuss

some theoretical results about the structure of uncertainty sets.

We start by analyzing simple uncertainty sets, namely the case where V is known, as well

as hyperrectangular, spherical, and ellipsoidal uncertainty sets. We show a compositionality

rule that allows market designers to combine multiple uncertainty sets into a single robust

optimization problem. We will also prove two general theorems that aid in constructing

uncertainty sets from data, one inductive and one transductive.

The case where V is known, V = {V}, is quite straightforward. As discussed in Chapter 3,

this problem is known to be polynomial-time solvable, as it is a linear program with totally

unimodular constraints. Let us now consider hyperrectangular, spherical, and ellipsoidal

uncertainty sets. Many simple and intuitive models for uncertainty sets take the form of
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axis-aligned hyperrectangles. A naïve uncertainty set might estimate confidence intervals for

each Vi,g independently and use a union bound to give a high-probability region for the affinity

scores. Market designers might also make assumptions about intervals bounding affinity

scores with certainty, taking the intersection of multiple such interval bounds. For example,

they might start with the global constraints of the unit hypercube. To take the example of

reviewer assignment, lower and upper bounds can then be given for pairs based on whether

they receive certain bids, whether the program committee recommends the assignment, or

whether a threshold on document similarity score is met. This model is ad-hoc and simple,

but may be suitable in practice. Furthermore, if we assume that with probability at least

1− δ, only a small constant fraction ε of these bounds can be violated, we can establish a

(ε, δ) confidence interval under more realistic assumptions.

If we take all the lower bounds on request-expert scores, we obtain a lower bound valuation

matrix V. Similarly, taking all the maximal possible values for request-expert scores yields

an upper bound valuation matrix V. Our uncertainty set is thus V□

.
= {V ∈ Rn×m | Vi,g ≤

Vi,g ≤ Vi,g ∀i, g}. Our first result is that Equation (4.1) can be solved for USW in polynomial

time for axis-aligned, hyperrectangular uncertainty sets.

Theorem 4.4.4 (Hyperrectangular Uncertainty). When the uncertainty set is an axis-aligned

hyperrectangular region V□, then

argmax
A∈Z

inf
V∈S□

USW(A,V) = argmax
A∈Z

USW(A,V).

This requires polynomial time via LP reduction.

Proof. For any assignment A ∈ Z, infV∈V□
USW(A,V) = USW(A,V), i.e., the lowest

welfare is achieved if we assume that all scores are the worst they can be under the rectangular

constraints. To see why, consider any matrix V ∈ V□ with Vi,g > Vi,g for some i and g.
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Consider V′ where V′
i,g = Vi,g and V′

i,j = Vi,j for i ̸= i or j ̸= g. Either Ai,g = 0 and hence

USW(A,V) = USW(A,V′) or Ai,g = 1 and thus USW(A,V) > USW(A,V′).

Axis-aligned, hyperrectangular uncertainty sets correspond to the case where uncertainty

is bounded independently across request-expert pairs, hence their relative simplicity. Although

hyperrectangular uncertainty sets are easy to work with, they are unnecessarily pessimistic,

since it is very unlikely that all affinities take extreme values at once (i.e., V is actually a

very unlikely outcome). We can improve our estimates using uncertainty set models that

account for the low probability of many simultaneous extreme values.

Many standard models directly bound the L1 or L2 error of their predictions, which

implies uncertainty sets that are more optimistic than hyperrectangular V (and hence have

tighter guarantees for Proposition 4.4.1).

We first analyze the case of symmetric uncertainty sets with L2 error guarantees. For

example, in reviewer assignment, we might solicit bids uniformly at random and then predict

unsampled bids using collaborative filtering with L2 error guarantees [31, 59, 98]. V could

then be constructed as a linear combination of values known with certainty (document-based

similarity scores and keyword-based matching scores) and the real and estimated bids, yielding

a spherical uncertainty set V .

We can consider a spherical (0, δ) uncertainty set to consist of a point estimate V0 and

a radius ε limiting the L2 error from the point estimate V0. Formally, we aim to solve the

problem argmaxA∈Z infV∈Bε(V0) USW(A,V), where Bε(V
0)

.
= {X ∈ Rn×m | ∥X−V0∥F ≤

ε} denotes the ε Frobenius-norm ball around V0.

Theorem 4.4.5 (RAU under Spherical Uncertainty). When V is a sphere,

argmax
A∈Z

inf
V∈Bε(V0)

USW(A,V) = argmax
A∈Z

USW(A,V0),
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which can be computed in polynomial time. Furthermore, for all A ∈ Z,

|USW(A,V0)− USW(A,V∗)| ≤ ε
√

∥A∥1
n

.

Proof. Let 0 denote the n×m matrix of all 0 values. For any A ∈ Z, it holds that

inf
V∈Bε(V0)

USW(A,V) = min
X∈Bε(0)

USW(A,V0 +X)

= min
X∈Bε(0)

USW(A,X) + USW(A,V0) Linearity of USW

= USW

(
A,V0 −A

ε

∥A∥F

)
See Below

= USW(A,V0)− USW

(
A,A

ε

∥A∥F

)
Linearity of USW

= USW(A,V0)− 1
n
∥A∥Fε

= USW(A,V0)− 1
n

√
∥A∥1ε.

Because USW(A,V0) does not depend on X, we just need to find argminX∈Bε(0) USW(A,X).

Because ∥A∥F is fixed (and the argmin occurs at ∥X∥F = ε) the argmin must be X = −A ε
∥A∥F

.

Again,
√
∥A∥1, ε, and n are all fixed. So we see that our function has the same argmax

as USW(A,V0). The problem argmaxA∈Z USW(A,V0) is an instance of expert assignment

with known V, which is solvable in polynomial time.

We can quantify the worst-case welfare loss due to spherical uncertainty with radius ε as

USW(A,V0)− USW(A,V∗) ≤ 1
n

√
∥A∥1ε.

A similar argument to the above shows that

max
V∈Bε(V0)

USW(A,V) = USW(A,V0) + 1
n

√
∥A∥1ε,
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and thus we also have

USW(A,V∗)− USW(A,V0) ≤ 1
n

√
∥A∥1ε.

One way of looking at Theorem 4.4.5 is that solving Equation (4.1) for USW over spherical

uncertainty sets provides no additional robustness guarantees over argmaxA∈Z USW(A,V0).

Thus, in order to obtain meaningful robustness guarantees, we require both a limit to the

total amount of variation in affinity scores (Theorem 4.4.4) as well as asymmetry between the

noise on affinity scores (Theorem 4.4.5). We can explain these results intuitively; to decide

how best to assign experts, we need to be able to make tradeoffs between assigning pairs

with potentially high (but also potentially low) value or assigning pairs that have an average

amount of value with higher certainty. Those tradeoffs are only meaningful if uncertainty

varies across request-expert pairs, and if there is a limited total amount of uncertainty.

With that intuition in mind, we generalize to the case of ellipsoidal uncertainty sets. In

a simple model, we might model affinity scores as multivariate Gaussians. In this case, we

obtain a mean vector µ ∈ [0, 1]nm and a positive semi-definite covariance matrix Σ ∈ Rnm×nm.

Given a confidence level 1− δ, we create an uncertainty set

V .
=
{
v ∈ Rnm | (v − µ)TΣ−1(v − µ) ≤ χ2

nm(1− δ)
}
, (4.4)

where χ2
k is the inverse CDF of the χ2 distribution with k degrees of freedom. If we assume

no model error (which is not a safe assumption generally), then the true affinity scores

are contained within V with probability at least 1 − δ. We know also that χ2
nm(1 − δ) ≤

nm+ 2
√
nm ln 1

δ
+ 2 ln 1

δ
. The size of the uncertainty set depends only logarithmically on 1

δ
,

and thus we can trade off between δ and the L1 diameter of the uncertainty set.
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While the Gaussian model employed in (4.4) makes a strong modeling assumption, we can

use a validation set and a predictive model with provable tail bounds to obtain uncertainty

sets that do not require any such assumptions. To accomplish this, we require a predictive

model of valuations. Market makers can obtain L2 error bounds using validation data, and

this will yield an ellipsoid due to sampling bias (only certain request-expert pairs will be

observed). In this setting, the uncertainty set is not derived as a confidence interval of a

probability distribution, but rather directly comes from a tail bound on total generalization

error. Optimizing in this setting requires using a robust approach, and cannot be done with

average case analysis. This approach is similar to the bounds we derived in Theorem 3.3.3,

but that theorem derives a tighter bound using the fact that A is fixed prior to computing

the bound. We derive a general bound that instead allows us to select A robustly.

Suppose the true value of some request-expert pair is f ∗(i, g), and we have access to a

predictive model f̂(i, g), perhaps learned on historical data. In practice, f̂ predicts the value

of assigning expert g ∈ M to request i ∈ N based on any information available prior to

assignment, and the specific definition of value is left to the market designer. For example, a

reviewer assignment venue may decide that affinity is best measured via reviewer bids, and

they may use historical data to train a predictor f̂ to predict missing bids from document-

based similarity scores and keywords. Alternatively, venue organizers may decide that the

ground truth affinity f ∗(i, g) should correspond to a meta-reviewer’s judgment of review

quality, and f̂ can then be trained on historical data to predict these judgments. We will take

V̂i,g
.
= f̂(i, g) and V∗

i,g
.
= f ∗(i, g). We assume that we can evaluate f̂ on all request-expert

pairs in the current assignment problem, and potentially on pairs from historical data as well.

We may be able to sample f ∗(i, g) for some, but not all, pairs in the current problem and

historical data (the validation data). We then probabilistically bound a weighted average of

the square error between f̂ and f ∗ in terms of an estimate of expected square error computed

on the validation set.
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The details of the validation set vary by application, but the overall strategy will be to

estimate the square error E[(V∗ − V̂)2], where V∗ and V̂ are given by f ∗ and f̂ on a random

request-expert pair. We show two such approaches, the first inductive, using historic or

auxilliary data to form the validation set, and the second transductive, assuming a small

random sample of true valuations can be queried within the current set of requests and

experts. We will need to define the notion of sampling a sequence of random variables

conditionally independently without replacement.

Definition 4.4.6. A sequence of variables x1, x2, . . . xt, where all xi ∈ X, is sampled condition-

ally independently without replacement from a distribution D with support X if the variables

xi are sampled in order from x1 to xt, and for any i ∈ {1, . . . t}, PrD(xi = x|x1, . . . xi−1) =

PrD(xi=x)∫
X\{x1,...xi−1}

PrD(xi=y)dy
for all x ∈ X \ {x1, . . . xi−1} and PrD(xi = x|x1, . . . xi−1) = 0 for

x ∈ {x1, . . . xi−1}.

Theorem 4.4.7 (Ellipsoidal Uncertainty Sets from Inductive Predictors). Let D′ be a proba-

bility distribution over request-expert pairs, and let DN and DM be distributions over requests

and experts, respectively. Assume that N and M were drawn conditionally independently

without replacement from DN and DM, respectively. Suppose we sample t request-expert pairs

{(ij, gj)}tj=1 conditionally independently without replacement from D′, and these request-expert

pairs have true and estimated affinity scores {f ∗(ij, gj)}tj=1 and {f̂(ij, gj)}tj=1, respectively.

Let

α(i, g)
.
=

PrI∼DN (I = i) PrE∼DM(E = g)

Pr(I,E)∼D′((I, E) = (i, g))

denote the probability ratio of sampling i from DN and g from DM to sampling (i, g) from

D′, and let

αmin
.
= inf

i∈N ,g∈M
α(i, g)

denote the infimum probability ratio. Now construct the ellipsoid matrix Σ ∈ Rnm×nm as the

diagonal matrix such that Σim+j,im+j = α(i, gj) for all i ∈ N, gj ∈M .
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Then for any δ ∈ (0, 1), the ellipsoid

V .
=

{
v ∈ Rnm

∣∣∣∣∣ 1

nm
(v − v̂)⊺Σ−1(v − v̂) ≤ 1

t

t∑
j=1

(f∗(ij , gj)− f̂(ij , gj))
2

︸ ︷︷ ︸
=ξ̂

+

√(
1

t
+

n+m

nmα2
min

)
ln 1

δ

2︸ ︷︷ ︸
=η

}

is a (0, δ) uncertainty set, where ξ̂ denotes the empirical square error of our estimated scores,

and η denotes the excess error bound due to sampling.

Proof. We aim to show the ellipsoid V is a (0, δ) uncertainty set. In other words, it must

hold that with probability 1− δ, the true affinity scores v∗ satisfy

1

nm
(v∗−v̂)Σ−1(v∗−v̂)≤ 1

t

t∑
j=1

(f ∗(ij, gj)−f̂(ij, gj))2︸ ︷︷ ︸
=ξ̂

+

√(
1

t
+

n+m

nmα2
min

)
ln1

δ

2︸ ︷︷ ︸
=η

.

We will give a probabilistic bound on the difference

X
.
=

1

nm
(v∗−v̂)⊺Σ−1(v∗−v̂)− ξ̂ = 1

nm

n∑
i=1

m∑
g=1

(V∗
i,g − V̂i,g)

2

α(i, g)
− 1

t

t∑
j=1

(f ∗(ij, gj)− f̂(ij, gj))2.

We first note that E[X] = 0. We assume that our requests i ∼ DN , our experts g ∼ DM,

and our samples (which are request-expert pairs) are drawn as (ij, gj) ∼ D′. For simplicity

of notation, we will write {(ij, gj)}tj=1 ∼ D′ to denote the set of all request-expert pairs

(ij, gj) ∼ D′. Also recall that α(i, g) = Pr
I∼DN (I=i) Pr

E∼DM (E=g)

Pr(I,E)∼D′((I,E)=(i,g))
. We have that

E
N∼DN ,M∼DM

{(ij ,gj)}tj=1∼D′

[X] = E
N∼DN ,M∼DM

{(ij ,gj)}tj=1∼D′

 1

nm

n∑
i=1

m∑
g=1

(V∗
i,g − V̂i,g)

2

α(i, g)
− 1

t

t∑
j=1

(f∗(ij , gj)− f̂(ij , gj))
2



= E
N∼DN ,M∼DM

 1

nm

n∑
i=1

m∑
g=1

(V∗
i,g − V̂i,g)

2

α(i, g)


− E

{(ij ,gj)}tj=1∼D′

1
t

t∑
j=1

(f∗(ij , gj)− f̂(ij , gj))
2

 .
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Following the standard argument for importance sampling, it is also clear that

E
N∼DN ,M∼DM

 1

nm

n∑
i=1

m∑
g=1

(V∗
i,g − V̂i,g)

2

α(i, g)

 =
1

nm

n∑
i=1

m∑
g=1

E
N∼DN ,M∼DM

[
(V∗

i,g − V̂i,g)
2

α(i, g)

]

=
1

nm

nm∑
j=1

E
(ij ,gj)∼D′

[
(f ∗(ij, gj)− f̂(ij, gj))2

]
=

1

t

t∑
j=1

E
(ij ,gj)∼D′

[
(f ∗(ij, gj)− f̂(ij, gj))2

]

= E
{(ij ,gj)}tj=1∼D′

1
t

t∑
j=1

(f ∗(ij, gj)− f̂(ij, gj))2
 .

In addition, X is a function of a system of negatively-dependent (due to sampling without

replacement) random variables comprising t auxiliary terms, m experts, and n requests.

Modifying any of the t auxiliary terms can result in at most 1
t

change in X, each of the n

requests has impact at most 1
nαmin

, and each of m experts has impact at most 1
mαmin

. The

sum of square bounded differences is thus 1
t
+ 1

nα2
min

+ 1
mα2

min
. Consequently, by McDiarmid’s

inequality [111], it holds

Pr

X ≥√(1

t
+

1

nα2
min

+
1

mα2
min

)
ln 1

δ

2

 ≤ δ.

Theorem 4.4.7 assumes that both the historic data and the current sets of requests and

experts are drawn at random. In particular, historic request-expert pairs are sampled from

D′ (modeling the historic data generation process), and requests and experts for the current

venue are sampled from DN and DM. Let us consider reviewer assignment as the example.

We might let DN and DM model the processes by which papers are submitted and reviewers

volunteer. We then construct α(i, g) to reweight square error on the current venue to match
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expected square error on D′ (i.e., we use importance sampling to calibrate expectations over

D′ versus those over DN and DM). For example, D′ reflects all elements of historic data

generation, most importantly the availability of historic data from multiple venues with

different focuses. We might then use the (relatively stable) topic areas of papers and reviewers

to model DN and DM, and thus α(i, g) reflects the ratio of the popularity of i and g’s topic

areas in the current venue to historic venues.

We show a similar result in the transductive setting. Instead of constructing a predictive

function from historical data, we generalize a small set of known affinities for the current

problem instance to the unknown valuations for the same instance. Note that D′ now reflects

the process by which we obtain samples for (ij, gj) pairs from the current problem instance,

rather than from historical data sources.

Theorem 4.4.8 (Ellipsoidal Uncertainty Sets from Transductive Predictors). Suppose we

sample t request-expert pairs {(ij, gj)}tj=1 conditionally independently without replacement

from D′, and these request-expert pairs have true and estimated affinity scores {f ∗(ij, gj)}tj=1

and {f̂(ij, gj)}tj=1, respectively. Let

α(i, g)
.
=

(nm)−1

Pr(I,E)∼D′((I, E) = (i, g))

denote the probability ratio between sampling (i, g) uniformly at random and sampling (i, g)

from D′, and construct the ellipsoid matrix Σ ∈ Rnm×nm as the diagonal matrix such that

Σim+j,im+j = α(i, gj) for all i ∈ N, gj ∈M .

Then for any δ ∈ (0, 1), the ellipsoid

V .
=

{
v ∈ Rnm

∣∣∣∣∣ 1

nm
(v − v̂)⊺Σ−1(v − v̂) ≤ 1

t

t∑
j=1

(f ∗(ij, gj)− f̂(ij, gj))2︸ ︷︷ ︸
=ξ̂

+

√
ln 1

δ

2t︸ ︷︷ ︸
=η

,

}
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is a (0, δ) uncertainty set, where ξ̂ denotes the empirical square error of our estimated scores,

and η denotes the excess error bound due to sampling.

Proof. Proof of result follows similarly to that of Theorem 4.4.7. Here, reviewers and papers

are fixed. We will bound the deviation from the mean for the random variable

X
.
=

1

nm

n∑
i=1

m∑
g=1

(Vi,g − V̂i,g)
2

α(p, r)
− 1

t

t∑
j=1

(f ∗(ij, gj)− f̂(ij, gj))2.

We show that E[X] = 0, as

E
{(ij ,gj)}tj=1∼D′

[X] = E
{(ij ,gj)}tj=1∼D′

 1

nm

n∑
i=1

m∑
g=1

(Vi,g − V̂i,g)
2

α(p, r)
− 1

t

t∑
j=1

(f∗(ij , gj)− f̂(ij , gj))
2


=

1

nm

n∑
i=1

m∑
g=1

(Vi,g − V̂i,g)
2

α(p, r)
− 1

t

t∑
j=1

E
{(ij ,gj)}tj=1∼D′

[
(f∗(ij , gj)− f̂(ij , gj))

2
]

=
1

nm

n∑
i=1

m∑
g=1

(Vi,g − V̂i,g)
2

α(p, r)
− 1

nm

nm∑
i=1

E
{(ij ,gj)}nm

i=1∼Unif(N×M)

[
(f∗(ij , gj)− f̂(ij , gj))

2

α(ij , gj)

]

=
1

nm

n∑
i=1

m∑
g=1

(Vi,g − V̂i,g)
2

α(p, r)
− 1

nm

n∑
i=1

m∑
g=1

(Vi,g − V̂i,g)
2

α(p, r)
.

To apply the final bound, we need only consider the t independent auxiliary terms, each

of bounded difference 1
t
. In this case, we have the bounded difference term 1

t
for each of t

auxiliary terms. This yields, via the Hoeffding [76] or McDiarmid [111] inequalities, the final

result

Pr

X ≥
√

ln 1
δ

2t

 ≤ δ.

The transductive result can be straightforwardly applied to many different contexts in

which market designers can solicit samples of f ∗ on (ij, gj) pairs from the current assignment

problem, rather than historical data. This information must be obtained prior to assigning

the majority of experts. For example, conference organizers could define f ∗ as a reviewer’s
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hypothetical bid and Theorem 4.4.8 then requires soliciting a small number of bids to estimate

the error of f̂ . Similarly, f ∗ could correspond to meta-reviewer judgments of review quality,

accomplished by opting for a two-stage reviewing process, in which the reviews and feedback

generated in the first stage are used to estimate the error of f̂ . These definitions of f ∗ are

costly to sample, but organizers can still efficiently target sophisticated affinity models by

solving Equation (4.1) over the uncertainty sets of Theorem 4.4.8.

We naturally ask the question, “How many samples are sufficient to obtain a sharp

confidence bound?” Observe that, by Proposition 4.4.1, the gap between adversarial and true

welfare is L
n
, where L denotes the L1 diameter of V. For the ellipsoidal uncertainty set of

Theorem 4.4.8, L
n
≤ 2m

√
αmax(ξ̂ + η), where αmax

.
= supi∈N ,g∈M α(p, r). Furthermore, the

empirical square error ξ̂ converges to some ξ as the number of samples t increases, thus we

need only select t ∈ Ω
( log 1

δ

ξ2

)
samples to ensure that the uncertainty set is constant-factor

optimal, at which point the welfare gap is O(m
√
αmaxξ), which is also optimal to within

constant factors. Notably, the sufficient sample size t is independent of the problem size

(i.e., n and m), thus the added burden of soliciting these extra samples is negligible. We

also see that the fundamental limitation of this method is the average square error ξ, which

depends on the predictor, the problem instance, and the sampling distribution D′. It is thus

paramount to use predictors for which this quantity will be small. Fortunately, this is often

the case, as many predictive models are explicitly trained to minimize L2 error on some task,

which motivates the choice of our ellipsoidal uncertainty sets. Note that while this argument

pertains to Theorem 4.4.8, one can argue similarly for the necessary size of the validation set

to ensure η = O(ξ) in Theorem 4.4.7.

Finally, we note that it is possible to extend either result under less favorable (more

realistic) assumptions about the sampling process using the ε parameter (L1 error) of our

uncertainty set construction. In particular, either result produces a (tε, δ) uncertainty

set if V̂, V∗, and the associated (i, g) pairs are subject to adversarial corruption of tε of
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the validation set samples drawn from D′, which has immediate applications in privacy,

adversarial robustness, and various notions of strategy-proofness. Furthermore, to model

more complicated and potentially not fully understood distribution shift, we obtain via

Bennett’s inequality [17] a
(
tε + 1

3
ln 1

δ′
+
√
2tε(1− ε) ln 1

δ′
, δ + δ′

)
uncertainty set if the

validation set is instead drawn from some D′′ such that TVD(D′,D′′) ≤ ε.

We may often have more complicated uncertainty sets than the simple geometries described

above. For example, we can intersect the constraints of the unit hypercube with an ellipsoidal

uncertainty set. This produces a truncated ellipsoid, a common construction that we will see

again in Section 4.6.

Lemma 4.4.9 (Uncertainty Set Intersection). Suppose each Vi for i ∈ [k] is a (0, δi) uncer-

tainty set. Then V∩
.
=
⋂k

i=1 Vi is a (0, ∥δ∥1) uncertainty set.

Proof. Suppose some true valuation matrix V∗. We know that with probability at most δi,

V∗ is not in Vi (or more formally, there is no V ∈ Vi such that ∥V∗ −V∥1 = 0). By a union

bound, the probability that at least one of these conditions is violated is at most
∑k

i=1 δi,

and hence the probability that none is violated is at least 1−
∑k

i=1 δi.

We use Lemma 4.4.10 to convert (ε, δ) uncertainty sets to larger (0, δ) uncertainty sets.

Lemma 4.4.10 (L1 Error Terms). If V is a (ε, δ) uncertainty set, then for any η ∈ [0, ε], it

holds that the Minkowski sum

V ′ .= V + {x ∈ Rnm | ∥x∥1 ≤ η} = {v + x | v ∈ V , ∥x∥1 ≤ η}

is a (ε− η, δ) uncertainty set.

Proof. Denote the true valuations as V∗. If V∗ ∈ V ′, then we have ∥V −V∗∥1 = 0 ≤ ε− η.

We argue the case when V∗ /∈ V ′. By Definition 1.2.3, with probability at least 1− δ, there
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is some V ∈ V such that ∥V −V∗∥1 ≤ ε. We can assume that η ≤ ∥V∗ −V∥1, since if

not, then V∗ ∈ V ′. Consider V′ = V + η V∗−V
∥V∗−V∥1 . To show V′ ∈ V ′, we must show that∥∥∥η V∗−V

∥V∗−V∥1

∥∥∥
1
≤ η. This can be shown easily, as

∥∥∥η V∗−V
∥V∗−V∥1

∥∥∥
1
= η

∥V∗−V∥1∥V
∗ −V∥1 = η. In

addition,

∥V∗ −V′∥1 =
∥∥∥∥V∗ −

(
V + η

V∗ −V

∥V∗ −V∥1

)∥∥∥∥
1

=

(
1− η

∥V∗ −V∥1

)
∥V∗ −V∥1

= ∥V∗ −V∥1 − η

≤ ε− η,

where the final inequality holds with probability at least 1− δ. Therefore, with probability

at least 1− δ, V ′ contains a point V′ within ε− η L1 distance from V∗, and V ′ is a (ε− η, δ)

uncertainty set.

We can apply Lemmas 4.4.9 and 4.4.10 sequentially to intersect arbitrary (ε, δ) uncertainty

sets. We first expand them via Lemma 4.4.10 to obtain larger (0, δi) uncertainty sets, and we

then apply Lemma 4.4.9 to obtain their intersection.

We can also apply these results to the uncertainty sets previously described. For example,

the intersection of multiple axis-aligned, hyperrectangular constraints produces an axis-aligned

hyperrectangle. This may occur when structural constraints defined by the market maker

(e.g., in reviewer assignment, hard upper and lower bounds defined based on topic overlap)

intersect with per-pair error bounds. Similarly, we might consider cases with two intersecting

ellipsoidal error bounds derived from two different estimators using Theorems 4.4.7 and 4.4.8.

This intersection is uninteresting if the two ellipsoids have the same centroid and one is
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strictly smaller than the other, but if these ellipsoids have different centroids (as when the

estimators have different biases) their intersection can be quite beneficial.

We finish this section by demonstrating more concretely how to construct an uncertainty

set using a logistic regression estimator, when we have κ groups of requests. Logistic regression

models with bounded cross-entropy loss result in polyhedral uncertainty sets.

Assume we have a discrete set of c values L ⊆ R, with L = {l1, . . . lc}. For each request

i ∈ N and expert g ∈ M we denote the true distribution over values p∗(l|(i, g)) and the

distribution predicted by the logistic regression model is p̂(l|(i, g)).

We estimate the cross-entropy loss of the model on a test set TTEST, where |TTEST| = t.

This test set can be segmented by the group identity of the request, such that we have

TG1
TEST, T

G2
TEST, . . . T

Gκ
TEST for each of the κ groups (with sizes tG1 , . . . tGκ). We assume that

the test set comes from the same distribution as the agent-item pairs of the assignment

problem; this can be achieved either during dataset construction or by limiting the assignments

(through the C constraints) to better reflect the test distribution. We can also apply likelihood

reweighting in our uncertainty set construction.

For a request i and expert g, the cross-entropy loss of the distribution p̂ with respect to

the distribution p is defined as

H(p(l|(i, g)), p̂(l|(i, g))) .= −
∑
l∈L

p(l|(i, g)) log p̂(l|(i, g)).

For each TG
TEST, we compute the mean of the cross-entropy loss,

ξ̂G =
1

tG

∑
(i,g)∈TG

TEST

H(p(l|(i, g)), p̂(l|(i, g))),

as well as the standard error of the mean,
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η̂G =

 1

tG

∑
(i,g)∈TG

TEST

(H(p(l|(i, g)), p̂(l|(i, g)))− ξ̂G)2
 1

2

.

We model the distribution over cross-entropy losses for group G as Normal(ξ̂G, η̂G). We want

an uncertainty set V such that the true values lie outside V with probability at most δ. Thus,

using a union bound, we require each uncertainty set VG for individual groups to contain the

true valuations with probability at least 1− δ
κ
. We can thus give the bound that the cross

entropy loss is at most Φ−1(1− δ
κ
, ξ̂G, η̂G), where Φ−1(p, µ, σ) denotes the p percentile of a

normal distribution with mean µ and standard deviation σ.

For each group G with agents NG we obtain the uncertainty set

1

tGm

∑
i∈NG,g∈M

H(p(l|(i, g)), p̂(l|(i, g))) ≤ Φ−1(1− δ

κ
, ξ̂G, η̂G).

The bound can be made tighter if we restrict some pairs using C, in which case the cross-

entropy term on the left side is only averaged over the pairs which are not restricted.

4.4.2 Adversarial Projected Sub-Gradient Ascent Algorithm

We now present a general purpose algorithm for approximately solving Equation (4.1)

for any welfare objective W over convex uncertainty sets, as long as the adversarial (worst-

case) welfare can be computed in polynomial time. Theorem 4.4.11 shows that solving

Equation (4.1) is NP-hard for convex uncertainty regions of this type, even for USW.

Theorem 4.4.11 (Hardness of Robust Optimization). Solving Equation (4.1) with USW

is NP-hard over a convex uncertainty set V, even for V with a polynomial-time adversary.

In particular, robust optimization remains NP-hard even when V is restricted to bounded

polytopes formed by intersections of polynomially many halfspaces.

116



Proof. We reduce from the problem of maximizing egalitarian welfare under the reviewer

assignment constraints, which is known to be NP-hard [65, 157]. In the maximal egalitarian

welfare problem for reviewer assignment, we have the same feasible set of assignments Z, as

well as a fixed score matrix V. The goal is to find an assignment A maximizing the minimum

total score of any paper, or equivalently mini∈N
∑

g∈M Ai,gVi,g.

Given an instance of max egalitarian welfare (N,M,Z,V), we now construct an instance

of the general problem Equation (4.1) over a convex uncertainty set V . The set of n requests

N , m experts M , and valid assignments Z remain the same. To construct an uncertainty set

V , first consider the set V ′ = {V(1), . . . ,V(n)}, where V(p) is defined so that V(p)
i,g = Vi,g when

i = p and V
(p)
i,g = 0 when i ̸= p. Let V be the convex hull of V ′. In other words, V is the set

V .
=

{
X ∈ [0, 1]n×m

∣∣∣∣∣X =
n∑

i=1

αiV
(i),

n∑
i=1

αi = 1

}
.

Since V is a convex set, (N,M,Z,V) is an instance of the problem in Equation (4.1) over a

convex uncertainty set. Furthermore, V is a bounded polytope formed by the intersection of

polynomially many halfspaces.

For any A ∈ Z, we have that

Vmin
.
= argmin

V∈V
nUSW(A,V) = argmin

V∈V
USW(A,V).

We will show that Vmin ∈ V ′, completing the proof. Fix A and consider some element X ∈ V ,

where X =
∑n

i=1 αiV
(i) and (w.l.o.g.) α1, α2 > 0. Assume also w.l.o.g. that

∑
g∈M A1,gV1,g ≤∑

g∈M A2,gV2,g. Consider the alternative V′ ∈ V with V′ = (α1 + α2)V
(1) +

∑n
i=3 αiV

(i).

Then
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nUSW(A,X) = α1

∑
g∈M

A1,gV1,g + α2

∑
g∈M

A2,gV2,g +
n∑

i=3

αi

∑
g∈M

Ai,gVi,g

≥ (α1 + α2)
∑
g∈M

A1,gV1,g +
n∑

i=3

αi

∑
g∈M

Ai,gVi,g

= nUSW(A,V′).

Since we can always decrease USW(A,V) by restricting the support of the score matrices

(i.e., setting some αi ̸= 0 to be 0), the minimal USW is reached for some V ∈ V ′.

Therefore, since for any given A, we have that

min
V∈V ′

nUSW(A,V) = min
i∈N

∑
g∈M

Ai,gVi,g,

the maximizer for the maximin USW problem and the maximizer for the egalitarian welfare

problem are equivalent. In other words, if we can efficiently compute a robust solution to

Equation (4.1) with USW, we can solve the egalitarian welfare problem.

Due to this hardness result, we outline an approach to approximately solve Equation (4.1)

efficiently for convex uncertainty sets with polynomial-time adversaries. We start by allowing

fractional (rather than binary) assignments. We then apply sub-gradient ascent to approx-

imate argmaxÃ∈Z̃ infV∈V USW(Ã,V), where Z̃ is the convex closure of the feasible set of

discrete allocations Z. When the sub-gradient ascent algorithm terminates, we randomly

round the assignment to a binary assignment.

In particular, we present Algorithm 8, termed adversarial projected sub-gradient ascent.

Adversarial projected sub-gradient ascent applies an iterative adversarial optimization strategy

to the objective. In each iteration j, we take an adversary step, which identifies the pessimal

V(j) given assignment A(j−1). We then take a gradient ascent step from A(j−1) to A(j)

assuming the valuation matrix remains fixed at V(j), followed by a projection step, which
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Algorithm 8 Adversarial Projected Sub-gradient Ascent
Require: Error tolerance ε, sub-gradient norm bound λ, uncertainty set V , constrained allocation space Z̃, total

demands K =
∑

i∈N kN
i (i.e., the total number of assignments required)

1: Initialize V(0) ∈ V arbitrarily
2: A(0) ← argmax

A∈Z
USW(A,V(0)) // Initialize A(0) to optimize V(0) (via LP reduction)

3: Â← A(0); ŵ ← −∞ // Maintain best allocation Â and adversarial welfare ŵ
4: t←

⌈
2K(λ

ε
)2
⌉
;α← ε

λ2 // Compute sufficient step count t and step size α
5: for j ∈ {1, 2, . . . t} do
6: V(j) ← arg inf

V∈V
USW(A(j−1),V) // Adversary selects V(j) from V

7: if USW(A(j−1),V(j)) > ŵ // Update Â if adversarial welfare beats previous best
8: Â← A(j−1); ŵ ← USW(A(j−1),V(j))
9: A(j) ← A(j−1) + α∇A(j−1) USW(A(j−1),V(j)) // Update allocation with a sub-gradient step

10: A(j) ← argmin
Ã∈Z̃

∥Ã−A(j)∥2 // L2 projection onto feasible allocation set Z̃

11: return Round(Â) // Sample integral assignment

ensures A(j) remains feasible (i.e., does not violate any constraints on assignments). The

gradient ascent step is valid since the gradient ∇A USW(A, arg infV∈V USW(A,V)) is an

element of the sub-gradient ∇A infV∈V USW(A,V).

The number of iterations required for convergence depends on the gradient norm bound

λ, which is the smallest term such that ∥∇A USW(A,V)∥2 ≤ λ for all A and V. We

approximate the maximin optimal continuous matrix within an error of ε in number of

iterations polynomial in λ, 1
ε
, and the total demand for experts K. The time complexity of

adversarial projected sub-gradient ascent also depends on the adversarial minimization and

projection steps, but when these take polynomial time, so does the full algorithm. We state

the convergence results in Proposition 4.4.12. The proof applies standard convergence results

for sub-gradient descent [151].

Proposition 4.4.12 (Sub-gradient Ascent Efficiency). Let λ denote an upper bound on

the L2 norm of the sub-gradient elements ∇A USW(A,V) used during the algorithm. The

sub-gradient ascent component converges to within ε of the maximin optimal continuous

assignment in ⌈2K(λ
ε
)2⌉ iterations. The algorithm runs in time O

(
2KC(λ

ε
)2
)
, where C is

the time cost of one adversary and projection step.
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We use the following result from [151].

Theorem 4.4.13. Suppose that w : Rn 7→ R is a convex function with minimizer w∗ and

optimal set X∗ = {x ∈ Rn : w(x) = w∗}. Let x0 denote the starting point for sub-gradient

descent. Suppose we have an upper bound ρ ≥ maxx∈X∗∥x0 − x∥2. Suppose we also have an

upper bound λ for the Euclidean norm of the sub-gradient at each step of the sub-gradent

descent algorithm. After t steps of sub-gradient descent with constant step size α, if ŵ

represents the best function value found after t steps, then

ŵ − w∗ ≤ ρ2 + λ2α2t

2αt
.

Proof. First, we show that ρ ≤
√
2K (recall ρ is defined as the upper bound ρ ≥ maxx∈X∗∥x0−

x∥2). Because the initial assignment A(0) and the optimal assignment A∗ both lie in Z̃, they

both must satisfy the constraint that for all requests i ∈ N ,
∑

g∈M Ai,g = kN
i . This implies

that even if there is no overlap in the two assignments, they will differ on at most 2K entries.

Taking the Euclidean norm over the difference of the two assignments in the worst case gives

the bound on ρ.

Our function is concave, and we are maximizing over the input space, so we can apply

Theorem 4.4.13 to minimize its negative. From Theorem 4.4.13 we know that after t iterations

of sub-gradient ascent with step size α, the error ε = infV∈V USW(A∗,V)−infV∈V USW(Â,V)

satisfies

ε ≤ ρ2 + λ2α2t

2αt
.

The right-hand side is minimized at α =
ρ

λ
√
t
. If we substitute this value of α, we get

ε ≤ ρλ√
t
.
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Solving for t then yields

t ≥
(ρλ
ε

)2
.

Since ρ ≥
√
2K, the larger number of iterations t ≥ 2K(λ

ε
)2 will suffice. Substituting this

value of T into the equation given for α above yields α = ε
λ2 .

Although the bound on the number of iterations can be quite large, it proves the convex

relaxation of Equation (4.1) is solvable in polynomial time, as long as the adversary and

projection steps can be solved in polynomial time and λ is bounded. In addition, the required

number of iterations until convergence will typically be much smaller in practice.

The complexity result improves in the case of (truncated) ellipsoidal uncertainty sets.

The adversarial minimization step requires polynomial time under truncated ellipsoidal

uncertainty sets, as it is a linear objective under convex quadratic constraints (and box

constraints), which is a second-order conic program, and the projection step always requires

polynomial time, as it is a convex quadratic objective under linear constraints (i.e., the

assignment constraints Z̃). The bound λ can be difficult to compute in the general case, but

we show λ is typically well-bounded in the case of truncated ellipsoidal uncertainty sets.

Corollary 4.4.14 (Sub-gradient Ascent Efficiency under Ellipsoidal Uncertainty). For a

truncated ellipsoidal uncertainty set, the sub-gradient ascent component Algorithm 8 converges

to within ε of the maximin optimal continuous assignment in O
(
2Km
nε2

)
iterations.

Proof. Because the sub-gradient is always contained in V, we can easily upper-bound the

norm of it. We have for all A ∈ Z̃ and V ∈ V that

∥∇A USW(A,V)∥2 ≤ max
V∈V

1
n
∥V∥2.

If the ellipsoid has center µV and radius q, then by the triangle inequality,

max
V∈V
∥V∥2 ≤ ∥µV∥2 + q,
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where q can be computed as the maximum eigenvalue of ΣV . Both ∥µV∥2 and q are O(
√
nm),

so we see that λ is O(
√

m
n
). Applying Proposition 4.4.12 completes the proof.

Finally, we can round using the extended Birkhoff von Neumann decomposition sampling

algorithm [28, 64, 80]. This sampling algorithm generates an integral sample AROUND from

the distribution defined by the continuous assignment matrix Â. The sample AROUND still

satisfies the constraints of Z̃, and E[AROUND] = Â.

The time complexity of this sampling algorithm is O(mn(m + n)), which is typically

negligible compared to the complexity of sub-gradient ascent. Theorem 4.4.3 bounds the

expected and probabilistic regret of adversarial projected sub-gradient ascent.

4.4.3 More Efficient Algorithms for Special Cases

The adversarial projected sub-gradient ascent method does not exploit the structure

of the specific instantiations of Equation (4.1). It is often computationally expensive or

intractable, as demonstrated empirically in Section 4.6. Despite the inherent complexities of

these problems, we show that under specific assumptions, these problems reduce to forms

that are easier to optimize. We then discuss a range of algorithms for efficiently optimizing

the simplified problems.

We focus on the class of uncertainty sets defined by linear and ellipsoidal constraints:

V =
{
v ∈ Rnm | ∀i ∈ [1, l], (v − v̂i)Σ

−1
i (v − v̂i) ≤ r2

i ,Qv ⪰ e,v ⪰ 0
}
,

where the ith ellipsoidal uncertainty set has center v̂i ∈ Rnm
0+ , covariance matrix Σi ∈ Rnm×nm,

with radius ri ∈ R, Q ∈ Rk×nm, and e ∈ Rk (k is the number of linear constraints). We

will further assume that the covariance matrices corresponding to the ellipsoidal uncertainty

sets are positive semi-definite. This limitation on the structure of uncertainty sets is not

too restrictive; it is possible to construct such uncertainty sets for standard models using
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statistical bounds, as demonstrated for logistic regression in Section 4.4.1. When an integer

allocation is either not feasible or computationally intractable, we relax the set of feasible

integer assignments Z to the set of feasible continuous allocations Z̃.

Utilitarian Welfare. We first consider allocations that optimize the utilitarian welfare

under the worst valuation matrix in the uncertainty set. We formulate the problem as:

max
a∈Z

min
v∈V

USW(a,v). (4.5)

The objective and constraints of the inner-minimization problem described in (4.5) are

convex, which confirms that the inner-minimization problem is also convex. The problem is

strictly feasible, which satisfies Slater’s condition [25] for strong duality. Therefore, by taking

the dual of the inner-minimization problem, we can simplify the problem in (4.5) into a single

equivalent maximization problem. We provide the dual formation in Proposition 4.4.15.

In the dual, let β ∈ Rk
0+ be the dual variable corresponding to the linear constraints

Qv ⪰ e, λ ∈ Rl
0+ be the dual variable associated with the ellipsoidal constraints, and

ξ ∈ Rnm be the variable that combines the primal variable a with the dual variable of the

non-negativity constraint on v for variable elimination. Furthermore, we define a set of

feasible ξ as Z̃ξ = Z − Rnm
0+ , which is Pareto-dominated by Z.

Proposition 4.4.15. The problem in (4.5) is equivalent to solving

max
ξ∈Z̃ξ,λ∈Rl

0+,

β∈Rk
0+

p⊺Σ−1
[L]q

⊺ + β⊺e− 1

4
∥p⊺Σ

−1/2
[L] ∥

2
2 +

l∑
i=1

λi∥v̂⊺
i Σ

−1/2
i ∥22 − ∥q⊺Σ

−1/2
[L] ∥

2
2 −

l∑
i=1

λir
2
i , (4.6)

where p = −β⊺Q+ξ and q =
∑l

i=1 λiv̂
⊺
i Σ

−1
i , and Σ[L] =

∑l
i=1 λiΣ

−1
i . Let ξ∗ be the optimal

ξ in (4.6). Then, the optimal allocation a∗ can be derived from ξ∗ by solving:

1

n
a ⪯ ξ∗, a ∈ Z ,
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Proof. Let a′ = a
n
. Consider the inner-minimization problem:

min
v∈Rnm

USW(a,v)

∀i ∈ [1, l], (v − v̂i)Σ
−1/2
i (v − v̂i) ≤ r2

i

Qv ⪰ e

v ⪰ 0,

(4.7)

We will use the Lagrangian method for computing the dual of the above problem. The

Lagrangian for the above problem is given by

L(v,λ ∈ Rl
0+,β ∈ Rk, ζ ∈ Rnm) = a′⊺v +

l∑
i=1

λi

(
(v − v̂i)Σ

−1
i (v − v̂i)− r2

i

)
− β⊺(Qv − e)− ζ⊺v.

(4.8)

From the first-order optimality conditions, we get

∂L(v,λ ∈ Rl
0+,β ∈ Rk, ζ ∈ Rnm)

∂v
= 0

a′ +
l∑

i=1

2λi(v − v̂i)Σ
−1
i − β⊺Q− ζ = 0

=⇒ v =

∑l
i=1 2λiv̂

⊺
iΣ

−1
i − (a′ − β⊺Q− ζ)∑l
i=1 2λiΣ

−1
i

.

Substituting this value of v in (4.8), we get,
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max
λ∈Rl,

β∈Rnm,
ζ∈Rnm

− 1

4

(a′ − β⊺Q− ζ)
⊺

(
l∑

i=1

λiΣ
−1
i

)−1

(a′ − β⊺Q− ζ)

+
l∑

i=1

λiv̂
⊺
iΣ

−1
i v̂i

−

(
l∑

i=1

λiv̂iΣ
−1
i

)(
l∑

i=1

λiΣ
−1
i

)−1( l∑
i=1

λiv̂iΣ
−1
i

)⊺

+ (a′ − β⊺Q− ζ)⊺

(
l∑

i=1

λiΣ
−1
i

)−1( l∑
i=1

λiv̂
⊺
iΣ

−1
i

)⊺

−
l∑

i=1

λir
2
i + β⊺e

λ ⪰ 0

β ⪰ 0

ζ ≥ 0

(4.9)

Using change of variables ζ = a′ − ξ, and combining the dual with the outer-maximization

problem in (4.5), we get

max
a∈Z,λ∈Rl

0+,β∈Rk
0+,

ζ∈Rnm
0+ ,ξ∈Rnm

− 1

4
∥p⊺Σ

−1/2
[L] ∥

2
2 +

l∑
i=1

λi∥v̂⊺
iΣ

−1/2
i ∥22

− ∥q⊺Σ
−1/2
[L] ∥

2
2 + p⊺Σ−1

[L]q
⊺ −

l∑
i=1

λir
2
i + β⊺e

s.t. ζ = a′ − ξ,

(4.10)

where p = β⊺Q + ξ, Σ[L] =
∑l

i=1 λiΣ
−1
i , and q =

∑l
i=1 λiv̂

⊺
iΣ

−1
i . Note that the above

optimization problem is concave; from affine-composition rule in convex optimization, we

retain the concavity of the objective after the change of variable and the allocation a only

appears in a linear constraint which is convex.

We further simplify the above problem by eliminating the allocation variables a and the

dual variable ζ and subsequently deriving them from the solution of the resultant problem.

Note that in the above problem a′ − ζ = ξ. Let (a∗, ζ∗) represent an optimal (a, ζ) pair

for the problem in (4.10). Note that there can be multiple pairs of (a, ζ) that are optimal.
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Let a′∗ = 1
n
a∗. To eliminate ζ and a, we need to find a set of feasible ξ, which we denote by

Z̃ξ, such that there exists a ξ′ ∈ Z̃ξ with ξ′ = a′∗ − ζ∗ for at least one optimal pair (a∗, ζ∗).

If there exists such a ξ′ ∈ Z̃ξ, then ξ′ maximizes the objective in (4.10). Furthermore, Z̃ξ =

Z − Rnm
0+ = {ξ ∈ Rnm | ∀i ∈ N :

∑m
j=1 ξim+j ≤ kN

i ,∀gj ∈ M :
∑n

i=1 ξim+j ≤ kM
j , ξ ⪯ c}

satisfies the above criteria for optimality.

Thus, we can break down the problem in (4.10) into two sub-problems. In the first

problem, we obtain the optimal value of λ, ξ and β by solving:

ζ∗,β∗, ξ∗ = argmax
ζ∈Rnm

0+ ,β∈Rk
0+,

ξ∈Z̃ξ

− 1

4
∥p⊺Σ

−1/2
[L] ∥

2
2 +

l∑
i=1

λi∥v̂⊺
iΣ

−1/2
i ∥22 − ∥q⊺Σ

−1/2
[L] ∥

2
2

+ p⊺Σ−1
[L]q

⊺ −
l∑

i=1

λir
2
i + β⊺e,

where p = −β⊺Q+ ξ and q =
∑l

i=1 λiv̂
⊺
iΣ

−1
i , and Σ[L] =

∑l
i=1 λiΣ

−1
i . The set of optimal

(a, ζ) pairs are computed by solving a system of equations:

{(a, ζ) | a ∈ Z, 1
n
· a− ζ = ξ∗, ζ ∈ Rnm

0+ }.

Proposition 4.4.15 shows that the optimal allocation for the problem in Equation (4.5) can

be computed by first solving the concave cubic program in Equation (4.6) to obtain ξ∗ and

then deriving the optimal allocation a∗ from ξ∗ by solving a system of equations. The problem

in Equation (4.6) is a single maximization problem with fewer variables and constraints as

compared to the max-min problem in (4.5), making it simpler to solve. When the valuation

uncertainty set is polyhedral, the problem in (4.6) simplifies further into a linear program

(LP) which can be solved efficiently using standard LP solvers like Gurobi [73]. We present
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this result in Corollary 4.4.16. Moreover, when the valuation uncertainty set has a single

ellipsoidal constraint with a non-negativity constraint, we can compute the exact optimal

solution using iterated quadratic programming (IQP), as described in Corollary 4.4.17.

Corollary 4.4.16. In the case where the uncertainty set V is defined purely by linear

constraints, i.e., V = {v ∈ Rnm
0+ | Qv ⪰ e}, the optimal allocation a∗ for the problem in (4.5)

can be computed by solving the integer linear program:

max
a∈Z,β∈Rk

0+

β⊺e

β⊺Q ⪯ 1

n
a.

(4.11)

This problem is totally unimodular, and therefore the optimal fractional solution for a

corresponds to the optimal integer solution.

Proof. Consider the following inner-minimization problem. Let a′ = a
n
. Consider the

inner-minimization problem:

min
v∈Rnm

USW(a,v)

Qv ⪰ e

v ⪰ 0,

We compute the dual of the above problem using the Lagrangian method.

L(v,λ ∈ Rl
0+,β ∈ Rk

0+, ζ ∈ Rnm
0+ ) = a′⊺v − β⊺(Qv − e)− ζ⊺v

= (a′ − β⊺Q− ζ)⊺v + β⊺e

L(λ ∈ Rl
0+,β ∈ Rk

0+, ζ ∈ Rnm
0+ ) =


β⊺e (a′ − β⊺Q− ζ) ⪰ 0

−∞ otherwise

(4.12)

127



Therefore, the dual is given by

max
β∈Rk

0+,ζ∈Rnm
0+

β⊺e

β⊺Q− ζ ⪯ a′.

(4.13)

Since ζ is non-negative, we can eliminate it to get

max
β∈Rk

0+

β⊺e

β⊺Q ⪯ a′.

(4.14)

Combining the dual with the outer-maximization problem in (4.5) yields the final result.

Corollary 4.4.17. Suppose the set V in (4.5) is defined by a single truncated ellipsoidal

constraint V = {v ∈ Rnm
0+ | (v − v̂)Σ−1

i (v − v̂) ≤ r2}. The problem in (4.5) is equivalent to

max
λ∈R0+,ξ∈Z̃ξ

(
ξ⊺v̂ − ∥ξ

⊺Σ
1
2∥2F

4λ
− λr2

)
. (4.15)

The exact optimal solution (λ∗, ξ∗) to Equation (4.15) can be computed by alternately per-

forming two steps until convergence: first, fixing ξ and optimizing λ, i.e., λ = ∥ξ⊺Σ
1
2 ∥2F/2r, and

second, fixing λ and solving a concave quadratic program to optimize ξ. Furthermore, the

optimal allocation a∗ can be computed from ξ∗ as in Proposition 4.4.15.

Proof. Setting k = 0 and l = 1 in (4.6) yields the stated optimization problem. This dual is

concave in λ and ξ, since it is a combination of affine functions on λ and ξ and a concave

function of λ and ξ. Unfortunately, the objective in (4.15) is a cubic polynomial that is

difficult to optimize exactly using standard solvers. However, since the objective is concave

and differentiable, we can leverage block coordinate descent to achieve the global optimal

solution, i.e., we can alternate between optimizing (ζ, ξ,a), which is a quadratic problem,
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and optimizing (λ) which has a closed form solution λ =
∥ξ⊺Σ

1
2 ∥2F

2r
, until convergence. Since

the objective is concave and differentiable, the above algorithm is guaranteed to converge to

the global optimal solution [14, 177, 179].

Group Egalitarian Welfare. We now consider the problem where we aim to maximize

the welfare corresponding to the worst group while using the robust approach for handling

uncertainty. We can represent this problem as

max
a∈Z

min
v∈V

min
G∈G

USW(a|G ,v|G ). (4.16)

This problem presents inherent challenges due to the non-smoothness of the inner-minimization

problem and the joint constraint on the uncertainties of the valuation matrices of different

groups. These factors make it difficult to compute the dual and reduce the problem or effi-

ciently solve the problem using the quadratic program technique described in Corollary 4.4.17.

To streamline this problem, we assume that the uncertainty sets for each group G ∈ G are

independent of each other.

Assumption 4.4.18 (Independence of Groups). The uncertainty set V is a Cartesian product

of individual groups’ uncertainty sets, V .
=
⊗

G∈G VG.

This assumption is not unreasonable in practical scenarios. For example, conferences often

group papers into disjoint tracks or require paper authors to select a single primary subject

area. Although papers may have multiple secondary subject areas, the top-level grouping

remains independent. Assumption 4.4.18 allows us to reorder the two inner-minimization

problems without compromising generality:

max
a∈Z

min
G∈G

min
v|G∈VG

1

|G|
a|G ·v|G . (4.17)
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We note that the problem in (4.17) is a concave-convex optimization problem that can be

solved exactly using the sub-gradient ascent method.

An alternative approach to optimizing the problem (4.17) involves taking the dual of

the inner-most minimization and reordering the inner-minimization over groups and the

inner-maximization problem over the dual variables to obtain a single max-min problem.

This simplified problem can then be solved with iterated max-min quadratic programming.

We illustrate this result in Proposition 4.4.19.

Proposition 4.4.19. The problem in (4.16) is equivalent to solving

max
ξ∈Z̃ξ,

λ∈Rκ×l
0+ ,

β∈Rκ×k
0+

min
G∈G

β|⊺G e|G +p|⊺G Σ−1
∗ q|G −

1

4
∥p|⊺G Σ

−1/2
∗ ∥22

+
l∑

i=1

(
λ|G,i ∥v̂|⊺G,i Σ

−1/2
∗ ∥22 − λ|G,i r

2
G,i

)
− ∥q|⊺G Σ

−1/2
∗ ∥22,

(4.18)

where ∀G ∈ G : p|G= (ξ |G −β |⊺G Q|G), q |G=
∑l

i=1 λ|G,i v̂ |G,i Σ|−1
G,i, and Σ∗ =

∑l
i=1, λ|G,i

Σ|−1
G,i. Let ξ∗ be the optimal ξ in (4.18). Then, the optimal allocation a∗ satisfies the system

of equations:

∀G ∈ G :
1

|G|
· a|G⪯ ξ∗G, a ∈ Z.

The dual variables λ |G ,β |G , ζ |G and ξ |G for each group G are interpreted as in

Proposition 4.4.15. The optimization problem in (4.18) is concave with respect to the dual

variables λ,β and ξ. Consequently, we can solve it using an approach similar to that in

Corollary 4.4.17. Specifically, we employ the max-min iterated quadratic programming [123],

alternately fixing λ and optimizing the rest of the dual variables (β, ξ) and vice versa until

convergence.
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Proof. Consider the following optimization problem.

max
a∈Z

min
G∈G

min
v|G∈VG

1

|G|
a|⊺G v|G

∀i ∈ [1, l],∀G ∈ G, (v|G −v̂|G,i)Σ|
−1/2
G,i (v|G −v̂|G,i) ≤ r2

G,i

∀G ∈ G, Q|G v|G⪰ e|G

∀G ∈ G, v|G⪰ 0.

(4.19)

It is important to note that the inner-minimization is a convex optimization problem

and the outer-maximization is a concave maximization problem. This is due to the fact that

affine functions are either concave or convex and minimum of concave objectives is concave.

Furthermore, the inner-most minimization over the uncertainty set of valuation matrices

is independent for each group. Thus, simply replacing each of these minimization problems

with their respective duals yields the following problem.

max
a∈Z

min
G∈G

max
λ|G∈Rl,

β|G∈R|G|m,

ζ|G∈R|G|m

− 1

4

((
a′|G −β|⊺G Q|G −ζ|G

)⊺
(

l∑
i=1

λ|G,i Σ|−1
G,i)

−1
(
a′|G −β|⊺G Q|G −ζ|G

))

+

l∑
i=1

λ|G,i v̂|⊺G,i Σ|
−1
G,i v̂|G,i

−

(
l∑

i=1

λ|G,i v̂|G,i Σ|−1
G,i

)(
l∑

i=1

λ|G,i Σ|−1
G,i

)−1( l∑
i=1

λ|G,i v̂|G,i Σ|−1
G,i

)⊺

+ (a′|G −β|⊺G Q|G −ζ|G)⊺
(

l∑
i=1

λ|G,i Σ|−1
G,i

)−1( l∑
i=1

λ|G,i v̂|⊺G,i Σ|
−1
G,i

)⊺

−
l∑

i=1

λ|G,i r
2
G,i + β|⊺G e|G

λ|G⪰ 0

β|G⪰ 0

ζ|G≥ 0.
(4.20)
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Using the change of variables ζ |G= a′ |G −ξ |G ∀G ∈ G, and combining the dual with the

outer-maximization problem, we get

max
a∈Z

min
G∈G

max
λ|G∈Rl,

β|G∈R|G|m,

ζ|G∈R|G|m

− 1

4
∥p|⊺G Σ

−1/2
∗ ∥22 +

l∑
i=1

λ|G,i ∥v̂|⊺G,i Σ|
−1/2
G,i ∥

2
2

− ∥q|⊺G Σ
−1/2
∗ ∥22 − p|⊺G Σ−1

∗ q|⊺G −
l∑

i=1

λ|G,i r
2
G,i + β|⊺G e|G

s.t. ζ |G= a′|G −ξ|G,

(4.21)

where ∀G ∈ G,p|G= (β |⊺G Q|G +ξ|G), Σ∗ =
(∑l

i=1 λ|G,i Σ|−1
G,i

)
, and q |G=

∑l
i=1 λ|G,i v̂ |⊺G,i

Σ|−1
G,i.

Since the inner maximization for each group is independent of the other groups, we can

re-order the inner minimization over groups and the inner-maximization problem. Thus,

without loss of generality, we can write the above optimization problem as

max
a∈Z,ζ∈Rnm,λ∈Rκ×l

0+ ,

β∈Rκ×k
0+ ,ξ∈Rnm

min
G∈G
− 1

4
∥p|⊺G Σ

−1/2
∗ ∥22 +

l∑
i=1

λi,G∥v̂⊺
i,GΣ

−1/2
∗ ∥22 − ∥q|

⊺
G Σ

−1/2
∗ ∥22

− p|⊺G Σ−1
∗ q|⊺G −

l∑
i=1

λ|G,i r2
G,i + β|⊺G e|G

s.t. ξ|G=
a|G
|G|
− ζ |G,

(4.22)

Using the same technique as in the proof of Proposition 4.4.15, we eliminate the variables a

and ζ in the above problem and derive them from the optimal ξ.

Eliminating ζ and a in (4.22), we get the following optimization problem.
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λ∗,β∗, ξ∗ = argmax
λ∈Rκ×l

0+ ,

β∈Rκ×k
0+ ,

ξ∈Z̃ξ

min
G∈G
− 1

4
∥p|⊺G Σ

−1/2
∗ ∥22 +

l∑
i=1

λ|G,i ∥v̂|⊺G,i Σ
−1/2
∗ ∥22 − ∥q|

⊺
G Σ

−1/2
∗ ∥22

− p|⊺G Σ−1
∗ q|G −

l∑
i=1

λ|G,i r2
G,i + β|⊺G e|G,

(4.23)

where ∀G ∈ G, p |G= (ξ |G −β |⊺G Q |G ), q |G=
∑l

i=1 λ |G,i v̂ |G,i Σ |G,i
−1, and Σ∗ =(∑l

i=1, λ|G,i Σ|G,i
−1
)
.

Interestingly, even when optimizing the egalitarian welfare objective with only polyhedral

uncertainty sets, the robust egalitarian problem described in (4.18) simplifies to a straight-

forward linear program. This is akin to what we observe in the robust utilitarian case

(Corollary 4.4.16). We formalize this finding in Corollary 4.4.20.

Corollary 4.4.20. In the case where the uncertainty set V is defined only by linear constraints,

i.e., V = {v ∈ Rnm | Qv ⪰ e,v ⪰ 0}, the max-min-min problem in (4.16) is trivially

transformable into a linear program.

Proof. Substituting l = 0 in (4.18), we get

max
a∈Z,β∈Rκ×k

min
G∈G

β|⊺G e|G

β|⊺G Q|G⪯ a′|G,
(4.24)

where a′|G= a|G
|G| ∀G ∈ G. Using simple algebraic manipulations, we can write the above

optimization problem as

max
a∈Z,β∈Rκ×k,t∈R

t

∀G ∈ G : t ≤ β|⊺G e|G

∀G ∈ G :β|⊺G Q|G⪯ a′|G,

(4.25)
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When the valuation uncertainty set is defined by a single ellipsoidal constraint per

group, we can employ the iterated quadratic programming (Iterated QP) approach used in

Corollary 4.4.17, alternately fixing λ and optimizing the rest of the dual variables (β, ξ) until

convergence.

Corollary 4.4.21 (Group Egalitarian Welfare with Ellipsoidal Uncertainty). Suppose that

the set V in (4.16) is defined by a single truncated ellipsoidal constraint per group i.e.,

V = {v ∈ Rnm | ∀G ∈ G : (v |G −v̂ |G)Σ|−1
G (v |G −v̂ |G) ≤ r2

G,v ⪰ 0}. Then the problem in

(4.16) is equivalent to solving

max
λ∈Rκ

0+

ξ∈Z̃ξ

min
G∈G

ξ|⊺G v̂|G −
ξ|⊺G Σ|G ξ|G

4λG

− λGr
2
G.

The exact optimal solution (λ∗, ξ∗) to Equation (4.15) can be computed by alternately

performing two steps until convergence: first, fixing ξ and optimizing λ, i.e., ∀G ∈ G, λG =

ξ|⊺GΣ|Gξ|G/2rG, and second, fixing λ and solving a concave quadratic program to optimize ξ.

The optimal allocation a∗ can be computed from ξ∗ as in Proposition 4.4.15.

Proof. Consider the following optimization problem.

max
a∈Z

min
G∈G

min
v|G∈R|G|m

0+

a|⊺G v|G

∀G ∈ G : (v|G −v̂|G)⊺Σ|−1
G (v|G −v̂|G) ≤ r2

G

v|G⪰ 0.

Similar to the general version of the problem in (4.22), the inner-most minimization is a

convex optimization problem and the outer-maximization is a concave maximization problem.
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This is again due to the fact that affine functions are either concave or convex and minimum

of concave objectives is concave.

The inner-most minimization over the uncertainty set of valuation matrices is independent

for each group. Therefore, by simply replacing each of these minimization problems with

their respective Lagrangian duals, as computed in Corollary 4.4.17, we obtain

max
a∈Z

min
G∈G

max
λG∈R0+

ζ|G∈R|G|m
0+

− 1

4

((
a|G −ζ |G

)⊺
λGΣ|G

(
a|G −ζ |G

))
+ (a|G −ζ |G)⊺v̂|G −λGr

2
G.

Note that the dual is computed following the approach outlined in the proof of Proposi-

tion 4.4.15.

Using the change of variables ∀G ∈ G : ξ|G= a|G −ζ |G, we get

max
a∈Z

min
G∈G

max
λG∈R0+

ξ|G∈R|G|m

ζ|G∈R|G|m
0+

ξ|⊺G v̂|G −
ξ|⊺G Σ|G ξ|G

4λG

− λGr
2
G

s.t. ξ|G= a|G −ζ |G .

Since the inner maximization for each group is independent of the other groups, we can

re-order the inner minimization over groups and the inner-maximization problem. Thus,

without loss of generality, we can write the above optimization problem as

max
a∈Z

λ∈Rκ
0+

ξ∈Rnm

ζ∈Rnm
0+

min
G∈G

ξ|⊺G v̂|G −
ξ|⊺G Σ|G ξ|G

4λG

− λGr
2
G

s.t. ξ|G= a|G − ζ |G .

Using the same technique as in the proof of Proposition 4.4.15, we can simplify the problem

by eliminating the variables a and ζ in the above problem and then derive them from the

optimal ξ.
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Eliminating ζ and a in the above optimization problem, we get

λ∗, ξ∗ = argmax
λ∈Rκ

0+

ξ∈Z̃ξ

min
G∈G

ξ|⊺G v̂|G −
ξ|⊺G Σ|G ξ|G

4λG

− λGr
2
G

s.t. ξ|G= a|G − ζ |G,

where Z̃ξ = Z − Rnm
0+ = {ξ ∈ Rnm | ∀a ∈ N :

∑
i∈I ξam+i ≤ κ̄a,∀i ∈ M :

∑
a∈N ξam+i ≤

ψ̄i, ξ ⪯ c}.

As in proposition 4.4.15, we can now determine the set of optimal (a, ζ) pairs by solving

the system of equations: {(a∗, ζ∗) | a ∈ Z, G ∈ G : a|G −ζ |G= ξ∗|G, ζ ∈ Rnm
0+ }.

Monotonic Welfare Functions We extend our findings to a broader class of monotonic

welfare functions. We show that when optimizing a monotonic welfare objective under the

assumption that valuation uncertainty sets across groups are independent, we can decompose

the problem into sub-problems such that we independently determine the worst valuation in

the uncertainty set of each group, while jointly optimizing the allocations of different groups.

Proposition 4.4.22. Consider an optimization problem of the form

max
a∈Z

min
v∈V

WM(USW(a|G1 ,v|G1 ),USW(a|G2 ,v|G2 ), . . . ,USW(a|Gκ ,v|Gκ )), (4.26)

where the welfare function WM (·) is monotonic in the utility of groups. If Assumption 4.4.18

holds, then (4.26) simplifies to

max
a∈Z

WM(min
v∈V

USW(a|G1 ,v|G1 ),min
v∈V

USW(a|G2 ,v|G2 ), . . . ,min
v∈V

USW(a|Gκ ,v|Gκ )).

Proof. The result directly follows from the monotonic property of the welfare function and

the independence of the uncertainty sets across groups.

136



We note that the egalitarian problem in (4.16) is an instance of the class of optimization

problem described in (4.26). Furthermore, when the allocation and valuation uncertainty

sets are convex and compact, the problem in (4.26) can be solved using constrained convex-

concave minimax optimization algorithms [50, 67, 176] or adversarial projected sub-gradient

ascent (Algorithm 8). These approaches do not depend on Assumption 4.4.18, though the

optimization may be simplified if independence does hold.

4.5 Stochastic Welfare Optimization

In this section, we optimize the CVaR of utilitarian and egalitarian welfare. This approach

works when the distribution Dv over the valuation matrix is known, or when we can sample

from Dv. We demonstrate that when the distribution follows a Gaussian distribution, the

CVaR of the utilitarian welfare has a simple representation that can be optimized without

sample approximation using a projected gradient ascent method. In all other cases, we can

approximately optimize CVaR using a sampling-based approach. In particular, when we have

monotone, concave welfare functions, we can always approximate the CVaR objective using

sampling. However, unlike in Propositions 4.5.1 and 4.5.7, where the approximated problem

becomes linear, with arbitrary monotone, concave welfare functions the problem may require

general concave optimization.

4.5.1 CVaR Allocation for Utilitarian Welfare

We wish to find an allocation that maximizes the CVaRα of the utilitarian welfare. For

any confidence level α, we formulate this problem as:

max
a∈Z

CVaRα [USW(a,v)] = max
a∈Z,b∈R

{
b− 1

α
E

v∼Dv

[b− USW(a,v)]+

}
, (4.27)
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where (x)+ = max(x, 0) represents the positive part of x. Computing the exact expectation in

this problem may not be feasible for every distribution Dv. Therefore, we adopt a sampling-

based approach to approximately optimize the CVaR of utilitarian welfare. We begin by

drawing h samples of the valuation matrix from Dv represented as v1,v2,v3, . . .vh. We then

use these samples to solve the problem described in (4.27) by solving the linear program

outlined in Proposition 4.5.1.

Proposition 4.5.1. Given h samples v1,v2,v3, . . .vh from Dv, the optimal allocation for

the problem in (4.27) can be approximately computed by solving

max
a∈Z

max
y∈Rh

0+,b∈R

b− 1

α

h∑
j=1

yj

 ∀j ∈ [1, h] : yj ≥
1

h

(
b− USW(a,vj)

)
. (4.28)

Proof. For any random utility X, CVaRα[X] can be written as

CVaRα[X] = max
b∈R

b− 1

α
E [b−X]+ , (4.29)

where (t)+ = max(t, 0). Given a posterior distribution of valuations Dv, we generate h

samples of the valuation matrix, i.e., v1, v2 . . .vh, and use it to empirically estimate the

expectation in (4.29).

max
a∈Rn×m

max
y∈Rh,b∈R

b− 1

α

h∑
j=1

yj


∀j ∈ [1, h] yj ≥ 0

∀j ∈ [1, h] yj ≥
1

h
b− 1

h
USW(a,vj)

a ∈ Z.

(4.30)
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The CVaR estimator used in (4.28) is a strongly consistent estimator [77], so the approxi-

mation error of the objective in (4.28) goes to 0 as h→∞. In Proposition 4.5.3, we bound

the sample complexity of (4.28) when the valuation matrix is sub-Gaussian distributed.

Assumption 4.5.2. Let w̃ represent the random welfare corresponding to a given allocation

a and let f be its density function. Furthermore, let να(W ;a,v) denotes the α-percentile

of the welfare corresponding to allocation a. There exist universal constants η, δ′ ≥ 0, s.t.,

f(w) ≥ η ∀w ∈ [να(W ;a,v)− δ′

2
, να(W ;a,v) + δ′

2
].

For any allocation a, let ĉh,α(a) represent the empirical estimate of CVaR of utilitarian

welfare computed from h samples and ch,α(a) represent the corresponding true value.

Proposition 4.5.3. Suppose that v is a multivariate sub-Gaussian with mean v̂ ∈ Rnm and co-

variance proxy Σ ∈ Rnm×nm, i.e., ∃K ≥ 0 s.t. E [exp(λ(v − v̂)⊺z))] ≤ exp(λ2K2z⊺Σz/2),∀λ ∈

R,∀z ∈ Rnm and that Assumption 4.5.2 holds. Let |Z| represent the number of feasi-

ble allocations, a′ = 1
n
a, and h >

8max(maxa∈Z a′⊺Σa′,8) log( 6|Z|
δ )

ε2(α)2 min(η2,1)
where δ ∈ (0, 1). Then,

Pr[∀a ∈ Z : |ĉh,α(a)− cα(a)| ≤ ε] ≥ 1− δ.

Proof.

Assumption 4.5.4 (L.A. et al. [95]). The random variable X is continuous with probability

density function f that satisfies the following condition: There exists universal constants

η, δ′ ≥ 0 such that f(x) ≥ η ∀x ∈ [vα − δ′

2
, vα + δ′

2
], where vα = F−1(α).

Theorem 4.5.5 (L.A. et al. [95]). Let (Xi)
n
i=1 be a sequence of i.i.d random variables. Let

ĉn,α be the empirical CVaR estimates of X computed from the above samples. Suppose that

Xi, i = 1, . . . n are σ−sub-Gaussian. Then for any ε ≥ 0, we have

Pr [|cn,α − cα| > ε] ≤ 6 exp

(
−n(α)2min(η2, 1)

8max(8, σ2)

)
. (4.31)
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By assumption, the valuation vector v is a sub-Gaussian that satisfies the following

condition: ∃K ≥ 0 s.t. E [exp(λ(v − v̂)⊺w))] ≤ exp(λ2K2v̂⊺Σv̂/2),∀λ ∈ R,∀w ∈ Rnm. Further,

we know that if X is a σ-sub-Gaussian random variable then cX is also sub-Gaussian with

variance proxy= cσ. Applying these two properties, the utilitarian welfare for a given

allocation a is also a sub-Gaussian with variance-proxy = K2a′⊺Σa′.

For any allocation a, let ĉh,α(a) represent the empirical estimate of CVaR of utilitarian

welfare and ch,α(a) represent the corresponding true value. Then, we can bound the error of

approximating the CVaR of the utilitarian welfare for allocation a as

Pr [|ĉM,α(a)− cα(a)| > ε] ≤ 6 exp

(
−h(α)2min(η2, 1)
8max(8, K2a′⊺Σa′)

)
. (4.32)

Furthermore, the approximation error for all allocations can be upper-bounded as

Pr [∀a ∈ Z, |ĉh,α(a)− cα(a)| ≤ ε] ≤ 1−
∑
a∈Z

Pr [|ĉh,α(a)− cα(a)| > ε] . (4.33)

Combining (4.32) and (4.33) and setting h >
8max(maxa∈Z a′⊺Σa′,8) log( 6|Z|

δ )
ε2(α)2 min(η2,1)

, yields

Pr[∀a ∈ Z, |ĉh,α(a)− cα(a)| ≤ ε] ≥ 1− δ. (4.34)

When the valuation v is normally distributed, we can circumvent the sampling approach

and instead solve the problem directly by optimizing a quadratic optimization problem

(Proposition 4.5.6), which depends solely on the mean and covariance of the valuations v.

Proposition 4.5.6. If the valuation v is distributed as a multivariate Gaussian, i.e., v ∼

N (v̂,Σ), the optimization problem in (4.27) simplifies to
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max
a∈Z

a⊺v̂ − ϕ(Φ−1(1− α))
α

√
a⊺Σa. (4.35)

Proof. The proof simply follows from the fact that for any normally distributed random

variable X ∼ N (µ, σ2) with mean µ ∈ R and σ ∈ R0+, CVaR[X] = µ − ϕ(Φ(α)−1)
1−α

σ. If

the valuation for any group G is normally distributed as N (v̂G,Σ |G), then the utility

corresponding to that group has mean = 1
|G|a |

⊺
G v̂ |G and variance =

(
1
|G|

)2
a |⊺G Σ |G

a|G. Therefore, for the utilitarian welfare objective mean=
∑

G
1
|G|a|

⊺
G v̂ |G and variance=∑

G∈G

((
1
|G|

)2
a|⊺G Σ|G a|G

)
. Substituting by these values in the CVaR formulation for

normal random variables, we get the stated results.

(4.35) is concave and can be solved exactly using the projected gradient ascent method.

4.5.2 CVaR Allocation for Group Egalitarian Welfare

For our final objective, we wish to optimize egalitarian welfare under uncertainty using

the CVaR approach. We formulate this optimization problem as

max
a∈Z

CVaRα

[
min
G∈G

USW(a|G ,v|G )

]
= max

a∈Z,w∈R

{
w − 1

α
E
[(
w −min

G∈G

1

|G|
· a|⊺G ṽ|G

)
+

]}
.

(4.36)

To optimize the problem described in (4.36), we solve a linear program similar to the one

used for optimizing the CVaR Utilitarian objective in (4.27).

Proposition 4.5.7. Given h samples v1,v2,v3, . . .vh from Dv, the optimal allocation for

the problem in (4.36) can be approximately computed by solving

max
a∈Z

max
y∈Rm

0+,b∈R

b− 1

α

M∑
j=1

yj


∀j ∈ [1, h],∀G ∈ G : yj ≥

1

h

(
b− 1

|G|
· a|⊺G v|jG

)
.

(4.37)
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Proof. Consider the CVaR of egalitarian welfare optimization problem, given by

max
a∈Z

CVaRα

[
min
G∈G

1

|G|
· a|⊺G ṽ|G

]
= max

w∈R,a∈Z

{
w − 1

α
E
[(

w −min
G∈G

1

|G|
· a|⊺G ṽ|G

)
+

]}
. (4.38)

Substituting the expectation in the above problem with the empirical expectation computed

from the h samples of the valuation matrices, we get

max
w∈R,a∈Z

{
w − 1

α

1

h

M∑
i=1

(
w −min

G∈G

1

|G|
· a|⊺G vi|G

)
+

}
. (4.39)

Introducing slack variables y ∈ Rm, we can write the above problem as

max
a∈Z

max
y∈Rh,b∈R

b− 1

α

m∑
j=1

yj


∀j ∈ [1, h] : yj ≥ 0

∀j ∈ [1, h] : yj ≥
1

h

(
b−min

G∈G

1

|G|
· a|⊺G v|jG

)
.

(4.40)

Without loss of generality, we can represent the above problem as

max
a∈Z

max
y∈Rm,b∈R

b− 1

α

m∑
j=1

yj


∀j ∈ [1, h] : yj ≥ 0

∀j ∈ [1, h], G ∈ G : yj ≥
1

h

(
b− 1

|G|
· a|⊺G v|jG

)
.

(4.41)

When the valuation matrix v is normally distributed and the uncertainty sets of different

groups are independent, the result is a quadratic program characterized by a linear objective

and quadratic constraints, as detailed in Proposition 4.5.8.
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Proposition 4.5.8. If v|G1 ,v|G2 , · · · ,v|Gκ are i.i.d and normally distributed, i.e., ∀G ∈

G, v|G∼ N (v̂|G ,Σ|G ), then, the optimization problem in (4.36) simplifies to

max
a∈Z,t∈R

t

s.t. ∀G ∈ G :

(
1

|G|
· a|⊺G v̂|G −t

)2

≥
(

1

|G|
· ϕ(Φ

−1(1− α))
(α)

)2

a|⊺G Σ|G a|G

∀G ∈ G :

(
1

|G|
· a|⊺G v̂|G −t

)
≥ 0.

(4.42)

Proof. The proof simply follows from the fact that for any normally distributed random

variable X ∼ N (µ, σ2) with mean µ ∈ R and σ ∈ R0+, CVaR[X] = µ − ϕ(Φ(1−α)−1)
α

σ. If

the valuation for any group G is normally distributed as N (v̂ |G ,Σ |G), then the utility

corresponding to that group has mean = 1
|G|a |

⊺
G v̂ |G and variance =

(
1
|G|

)2
a |⊺G Σ |G a |G.

Substituting these values in (4.37), we get

max
a∈Z

min
G∈G

(
1

|G|
· a|⊺G v̂G

)
− 1

|G|
· ϕ(Φ

−1(α))

(1− α)

√∑
G∈G

a|⊺G Σ|G a|G. (4.43)

Introducing a slack variable t to represent a lower bound on the group utilities and rearranging

the terms we get, we get

max
a∈Z,t∈R

t

∀G ∈ G :

(
1

|G|
· a|⊺G v̂|G −t

)
≥
(

1

|G|
· ϕ(Φ

−1(α))

(1− α)

)√
a|⊺G Σ|G a|G

∀G ∈ G :

(
1

|G|
· a|⊺G v̂|G −t

)
≥ 0.

(4.44)

Squaring the quadratic constraint on both sides and adding a constraint to ensure that the

non-negativity of the L.H.S of each each group constraint in (4.44) is retained after squaring,

gives us the final result.
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The problem in (4.42) is a second order conic program (SOCP) and can be solved using

popular SOCP solvers in CVXPY library [53]. In general, the sampling approach to CVaR

requires solving linear programs with a large number of samples to be effective, which makes

them computationally expensive. One potential solution is to leverage importance sampling

methods to reduce the variance of the estimator [51, 182].

Having laid out strategies for optimizing USW and GESW in the maximin robust and

CVaR stochastic optimization regimes, we now explore these objectives on real data.

4.6 Experiments

We compare the uncertainty-unaware solutions (optimizing for the USW or GESW of a

central estimate v̂) to the robust and CVaR approaches. Although we do not have access to

ground truth performance measures, we demonstrate through simulations that the robust and

CVaR approaches can retain higher true performance than the uncertainty-unaware solution,

when noise levels are non-negligible.

We use two main experimental setups here.

ICLR. We create uncertainty sets using five years of ICLR data, by constructing a multi-

variate Gaussian and taking a confidence interval (as outlined by the example in (4.4)). We

also truncate all values to be within [0, 1]. We then apply the sub-gradient ascent algorithm.

We use the OpenReview API to collect all papers submitted (both accepted and rejected)

to five recent iterations of ICLR (2018–2022). Following recent work, we use the pool of

authors for each year as the reviewer pool, since we do not have access to the true reviewer

identities for these conferences. The number of reviewers and papers for each conference year

is shown in Table 4.2.

For each author in each year, we collect the multiset of keywords from papers the author

submitted to ICLR in the current or previous years. We then follow a procedure similar
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to that of AAAI 2021 [100] to convert keywords into a mean vector µ ∈ Rnm, and we also

construct a covariance matrix Σ ∈ Rnm×nm
≥0 for paper-reviewer affinity scores. Vector p is set

so pi is an indicator for keyword i on paper p. Vector r is initially set so ri is the number

of times the keyword i appears on a paper written by that reviewer in this or previous

years’ conferences. We then modify the values (but not the ordering) of r such that the

minimum non-zero value is 0.2, the maximum value is 1, and the remaining non-zero values

are evenly-spaced between 0.2 and 1. Let λ ∈ RV be such that λi =
(
1
2

)i−1. Sorted represents

the function that sorts values of a vector in decreasing order, Mp and Mr denote the number

of non-zero entries in p and r respectively, and X =
∑Mp

i=1

(
1
2

)i−1. We set µpr =
λ·Sorted(p◦r)

X
,

Σim+j,im+j = (MpMr)
−2, and all off-diagonal entries of Σ are 0. This procedure was chosen

to roughly mirror the procedure used by AAAI 2021. For each year of ICLR, we set the

uncertainty set V for robust optimization to be the 95% confidence interval for the distribution

N (µ,Σ) (as in (4.4)), intersected with the unit hypercube (Lemma 4.4.9).

For each year of ICLR, we sample without replacement 60% of the reviewers and 60% of

the papers 100 times, to produce more data for statistical robustness of our experiments. We

assume that all papers require 3 reviews and all reviewers can review up to 6 papers. There

are no conflicts of interest.

AAMAS. We also run experiments on three reviewer assignment datasets containing only

bids. The datasets contain bids from the International Conference on Autonomous Agents

and Multiagent Systems (AAMAS) 2015, 2016, and 2021 [107, 108, 109].

Reviewers issue bids of yes, maybe, no, or no response. We run two experiments with

this data. In one, we binarize the bids such that yes and maybe are considered affirmative

and no is considered negative, while in the other we convert the bids to numerical scores

such that yes is 1, maybe is .5, and no is 0.01. Under the binarized model, we fit a logistic

matrix factorization model to predict whether the bid is affirmative or negative, and in the
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continuous model, we fit a Gaussian process matrix factorization model [97]. We derive

probability distributions and uncertainty sets from these models.

Both models define probability distributions over outcomes, which we use to compute and

evaluate the CVaR of utilitarian and egalitarian welfare. For the logistic model, we build a

polyhedral uncertainty set by estimating the cross-entropy loss on a held-out test set, and for

the Gaussian process model we use the uncertainty set described by (4.4).

For the binarized bids, we first set aside some of the observed bids as a test set. We

estimate the missing bids and the bids for the held-out test pairs using logistic matrix

factorization. Setting a hidden dimension size d, we construct two matrices X ∈ Rn×d and

Y ∈ Rm×d. We set d = 20. Let V∗ denote the true binarized bid matrix, where we observe

entries for the training set pairs (a, i) ∈ T . We predict the probability of an affirmative bid

as σ((XY⊺)a,i) where σ is the logistic sigmoid function. We select X and Y to minimize

∑
(a,i)∈T

−V∗
a,i ln (σ((XY⊺)a,i))−V∗

a,i ln ((XY⊺)a,i) .

For CVaR, we take samples from the distribution defined by σ(XY⊺), assuming all pairs are

independently-distributed. We also construct an uncertainty set as described at the end of

Section 4.4.1 using the cross-entropy loss on the test pairs.

Under the Gaussian process matrix factorization model [97], we simply predict a mean

and variance of a normal distribution for each reviewer-paper pair. We can then sample

values independently for each pair, or give a confidence interval for the joint Gaussian with

mn− 1 degrees of freedom.

These datasets do not contain groups of papers and reviewers, so we create 4 roughly

balanced clusters of reviewers and papers for each dataset. Given the real-valued bids in the

set {0.01, .5, 1} we set unknown bids to be 0. We then construct a graph with all reviewers

and papers as nodes, and the bid score between reviewers and papers is the edge weight. All
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inter-reviewer and inter-paper edges are set to 0 edge weight. We apply spectral embedding

with 5 dimensions to transform the nodes into vectors, and cluster the resulting vectors into

4 clusters to obtain 4 groups containing both papers and reviewers. To ensure a balance of

reviewers and papers across clusters, we employ Lloyd’s algorithm for KMeans clustering

with the modification that during each assignment step we enforce a lower bound on the

number of papers and number of reviewers assigned to each cluster.

We define our valid set of assignments Z as follows. For each paper i ∈ N , we set

kN
i = kN

i = 3 for all a in AAMAS 2015, and kN
i = kN

i = 2 for all i in AAMAS 2016 and 2021.

For each reviewer g ∈M , we set kM
g = 0 and kM

g = 15 for 2015 and 2016 and 4 for 2021. We

optimize and evaluate CVaR0.01; we take 4, 000 samples from the distribution to optimize

for CVaR using the sampling-based approach, and we take 10, 000 samples to estimate the

CVaR for evaluation. We optimize and evaluate the adversarial welfares at the δ = 0.3 level

(there is a 70% chance the true values lie in the uncertainty set). All results are averaged

over 5 runs of subsampling 20% of each dataset.

4.6.1 Results

Table 4.2: Adversarial and average welfare (mean ± standard deviation) for naïve LP,
FairFlow, PR4A, FairSequence, and Algorithm 8 on five ICLR conferences.

Year m n Adversarial USW · 100 (↑) Average USW · 100 (↑)
LP FF PR4A FS Alg. 8 LP FF PR4A FS Alg. 8

2018 1657 546 17±3 7±3 17±3 16±3 16±3 179±2 134±12 177±2 177±2 160±4
2019 2620 851 22±2 12±2 22±2 22±2 27±3 184±1 139±9 184±1 183±1 161±3
2020 4123 1327 17±2 11±2 18±2 17±2 23±2 187±1 158±8 187±1 186±1 166±5
2021 4662 1557 23±2 18±2 23±2 23±2 33±3 192±1 177±2 192±1 191±1 174±6
2022 5023 1576 28±2 23±2 28±2 27±2 38±2 191±1 177±1 190±1 190±1 172±3

Overall Performance. The results of the ICLR experiments are shown in Table 4.2.

Welfare is scaled by 100 for ease of comparison. Adversarial welfare is consistently highest

(bold) using Algorithm 8, except for 2018, which is within one standard deviation.
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Table 4.3: Performance of different allocations across each metric on the AAMAS 2015
dataset.

Allocation Evaluation Objective (↑)
USW GESW CVaR USW CVaR GESW Rob. USW Rob. GESW

USW 1.00± 0 1.00± 0 1.00± 0 1.00± 0 0± 0 0± 0
GESW 0.97± 0.01 1.00± 0 0.97± 0.01 0.97± 0.02 0± 0 0± 0
CVaR USW 1.00± 0 0.99± 0 1.00± 0 0.99± 0 0± 0 0± 0
CVaR GESW 0.98± 0 0.99± 0 0.97± 0.01 1.00± 0 0± 0 0± 0
Rob. USW 0.92± 0.01 0.90± 0.02 0.92± 0.01 0.90± 0.02 1.00± 0 1.00± 0
Rob. GESW 0.89± 0.04 0.85± 0.06 0.89± 0.04 0.86± 0.06 0.88± 0.02 1.00± 0

Table 4.4: Performance of different allocations across each metric on the AAMAS 2016
dataset.

Allocation Evaluation Objective (↑)
USW GESW CVaR USW CVaR GESW Rob. USW Rob. GESW

USW 1.00± 0 1.00± 0 1.00± 0 1.00± 0 0± 0 0± 0
GESW 0.99± 0 1.00± 0 0.99± 0 0.99± 0.01 0± 0 0± 0
CVaR USW 0.99± 0 0.98± 0.01 0.99± 0 0.98± 0.01 0± 0 0± 0
CVaR GESW 0.99± 0.01 0.99± 0.01 0.98± 0.01 1.00± 0 0± 0 0± 0
Rob. USW 0.91± 0.02 0.87± 0.03 0.91± 0.02 0.90± 0.03 1.00± 0 1.00± 0
Rob. GESW 0.76± 0.05 0.66± 0.04 0.76± 0.05 0.65± 0.05 0.74± 0.10 1.00± 0

Table 4.3 shows the results for the binarized version of AAMAS 2015 bids. For the

binarized AAMAS 2016 and 2021 datasets, Tables 4.4 and 4.5 show the performance of the

baseline USW and GESW maximizing allocations, the CVaR0.01 USW and GESW maximizing

allocations, and the adversarially-robust USW and GESW maximizing allocations at the

δ = 0.3 level. Because so many of the bids in AAMAS 2021 are recorded as no, since no is

the default bid, we randomly select 90% of the no bids to be converted to no response.

Tables 4.6 to 4.8 show the same results for the Gaussian matrix factorization version

of the 3 datasets, with the CVaR0.01 estimated by sampling from the estimated Gaussian

distribution, and the adversarial welfare computed over the truncated ellipsoidal uncertainty

set corresponding to the 1− δ confidence interval of the Gaussian. Results are not reported

148



Table 4.5: Performance of different allocations across each metric on the AAMAS 2021
dataset.

Allocation Evaluation Objective (↑)
USW GESW CVaR USW CVaR GESW Rob. USW Rob. GESW

USW 1.00± 0 1.00± 0 1.00± 0 1.00± 0 0± 0 0.40± 0.49
GESW 1.00± 0 1.00± 0 1.00± 0 1.00± 0 0± 0 0.40± 0.49
CVaR USW 1.00± 0 1.00± 0 1.00± 0 1.00± 0 0± 0 0.40± 0.49
CVaR GESW 1.00± 0 1.00± 0 0.99± 0 1.00± 0 0± 0 0.40± 0.49
Rob. USW 0.85± 0.04 0.69± 0.14 0.84± 0.05 0.64± 0.19 1.00± 0 1.00± 0
Rob. GESW 0.48± 0.09 0.32± 0.12 0.43± 0.09 0.20± 0.12 0.07± 0.08 1.00± 0

for the adversarial GESW approach, since the basic sub-gradient ascent approach fails to

converge even after 1, 000 iterations.

Table 4.6: Performance of different allocations across each metric on the Gaussian AAMAS
2015 dataset.

Allocation Evaluation Objective (↑)
USW GESW CVaR USW CVaR GESW Rob. USW Rob. GESW

USW 1.00± 0 0.95± 0.03 1.00± 0 0.94± 0.04 0.61± 0.19 0.34± 0.34
GESW 0.87± 0.08 1.00± 0 0.86± 0.09 0.98± 0.02 0.42± 0.30 0.32± 0.35
CVaR USW 1.00± 0 0.94± 0.03 1.00± 0 0.96± 0.04 0.63± 0.19 0.35± 0.34
CVaR GESW 0.90± 0.06 0.99± 0.01 0.90± 0.07 1.00± 0 0.51± 0.26 0.36± 0.33
Rob. USW 0.86± 0.07 0.76± 0.12 0.88± 0.06 0.80± 0.10 1.00± 0 0.99± 0.01
Rob. GESW 0.75± 0.13 0.77± 0.12 0.76± 0.13 0.82± 0.09 0.87± 0.09 1.00± 0

Each row shows the metrics for the allocation produced by the method which optimizes

for the objective shown in the left-most column. Objective values are normalized by dividing

by the maximum value of that objective per seed. All methods have 0 adversarial welfare,

even at the δ = 0.3 level, indicating that if robustness to adversarial noise is desired, it is

very important to consider this objective explicitly. We approximate the optimal CVaR0.01

using 1000 samples, which leaves some room for sampling error as evidenced by the strong

performance of the baseline USW and GESW allocations on the CVaR0.01 measure. However,
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relatively little noise is actually present in this dataset, as the CVaR0.01 is relatively high for

both USW and GESW in all cases.

Table 4.7: Performance of different allocations across each metric on the Gaussian AAMAS
2016 dataset.

Allocation Evaluation Objective (↑)
USW GESW CVaR USW CVaR GESW Rob. USW Rob. GESW

USW 1.00± 0 0.99± 0.01 1.00± 0 0.99± 0.02 0.47± 0.27 0.25± 0.38
GESW 0.91± 0.06 1.00± 0 0.91± 0.07 0.98± 0.01 0.37± 0.32 0.24± 0.38
CVaR USW 1.00± 0 0.98± 0.02 1.00± 0 0.99± 0.01 0.52± 0.25 0.27± 0.37
CVaR GESW 0.92± 0.05 0.98± 0.02 0.92± 0.06 1.00± 0 0.41± 0.31 0.28± 0.37
Rob. USW 0.84± 0.08 0.77± 0.12 0.86± 0.07 0.84± 0.09 1.00± 0 1.00± 0
Rob. GESW 0.73± 0.14 0.76± 0.13 0.74± 0.13 0.84± 0.09 0.85± 0.09 1.00± 0

Table 4.8: Performance of different allocations across each metric on the Gaussian AAMAS
2021 dataset.

Allocation Evaluation Objective (↑)
USW GESW CVaR USW CVaR GESW Rob. USW Rob. GESW

USW 1.00± 0 1.00± 0.01 1.00± 0 1.00± 0.01 0.53± 0.26 0.21± 0.40
GESW 0.80± 0.12 1.00± 0 0.79± 0.12 0.99± 0.01 0.24± 0.39 0.20± 0.40
CVaR USW 1.00± 0 1.00± 0.01 1.00± 0 1.00± 0.01 0.53± 0.26 0.21± 0.40
CVaR GESW 0.85± 0.08 1.00± 0 0.84± 0.08 1.00± 0 0.36± 0.34 0.20± 0.40
Rob. USW 0.81± 0.11 0.69± 0.16 0.81± 0.11 0.71± 0.16 1.00± 0 1.00± 0.01
Rob. GESW 0.70± 0.17 0.68± 0.17 0.71± 0.17 0.70± 0.16 0.88± 0.10 1.00± 0

Importance of the GESW Objective We run several experiments to further highlight

the distinction between the USW and GESW objectives. Figure 4.1 shows the results of this

experiment. We synthetically add extra papers to the AAMAS 2015 dataset, by first copying

uniformly at random some papers from the dataset and then modifying them. We modify

the papers by dividing their valuations and setting all but the top few valuations to 0. We

then consider GESW when treating the real papers as one group and the artificial papers

as another group. Results are reported as we vary the divisor applied to artificially scale

the artificial group’s valuations, the size of the artificial group (reported in the figure as the

150



1 10 20
Ratio of Group Scores

0

20

40

60

80
R

el
at

iv
e 

Lo
ss

 o
f M

ax
. U

SW
 S

ol
ut

io
n 

 (%
 o

f O
pt

im
al

)

0.08 0.17 0.26 0.32
Minority Group Ratio

0

5

10

15

20

R
el

at
iv

e 
Lo

ss
 o

f M
ax

. U
SW

 S
ol

ut
io

n 
 (%

 o
f O

pt
im

al
)

1 6 11 16 21 26 31 36 41 46
Number of Nonzero Affinites

0

5

10

15

20

R
el

at
iv

e 
Lo

ss
 o

f M
ax

. U
SW

 S
ol

ut
io

n 
 (%

 o
f O

pt
im

al
)

Figure 4.1: Relative loss (in GESW) of the maximum USW solution, compared to the optimal
GESW solution.

ratio of the minority group size to the total number of papers), and the number of valuations

per paper that are artificially set to 0. As all three parameters increase, the GESW of the

USW-optimal solution decreases relative to the GESW-optimal solution.

CVaR vs. Robustness under Left-Skewed Distributions CVaRUSW behaves simi-

larly to the uncertainty-unaware USW maximal approach in Figure 4.3.

The utility of CVaR is higher when welfare distributions exhibit a left fat-tail, meaning

a greater probability mass is concentrated in the left tail. Unlike the robust (minimax)
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approach, the CVaR method, particularly at higher α values, balances between extreme

pessimism and optimizing for the average performance. This is advantageous in allocation

problems with high uncertainty, where worst-case optimization can lead to overly pessimistic

and inefficient outcomes.

However, it’s crucial to differentiate between when to apply CVaR and when the robust

approach is more appropriate. The robust approach is better suited to scenarios with

extremely high stakes, where any failure is unacceptable—such as life-or-death situations (e.g.,

allocating medical experts). It is also effective in low-uncertainty contexts where optimizing

for the worst case is reasonable and does not significantly reduce efficiency.

There are several reasons why CVaR USW behaves very similarly to the uncertainty-

unaware USW maximal. When the valuation matrix is sampled from a Gaussian distribution,

the USW is just the mean of normal random variables. The standard deviation of the

utilitarian welfare is
√∑

a

∑
i σa,i/nm. Due to this the variance of the utilitarian measure is

fairly low, and USW is a more stable measure compared to GESW. Second, we were sampling

valuations from symmetrical Gaussian distributions and so the noise in the valuations was

(mostly) getting averaged out. Finally, we have a large number of items with very small

variance. In AAMAS 2015 and 2016, around 8− 9% of the entries have variance less than

0.005.

We perform an experiment where we model valuations using a negatively-skewed normal

distribution with the same means and variances as those estimated for AAMAS 2015. We

see increasing robustness of CVaR relative to uncertainty-unaware USW (Table 4.9). The

difference is sharper as the skew parameter gets more negative. We optimize and evaluate for

CVaR0.3, and robust USW is optimized at the δ = 0.3 level, for a normal distribution/ellipsoid.

This is actually somewhat optimistic, since the true worst-case will be a bit more extreme

with the additional skewness.
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Table 4.9: CVaR0.3 of USW under left-skewed Gaussians for the uncertainty-unaware, CVaR,
and robust approaches.

Skew CVaRUSW USW Robust USW

−0.5 1.64 1.56 1.01
−1 1.45 1.21 0.86
−2 1.33 0.96 0.75
−5 1.29 0.84 0.70
−10 1.28 0.82 0.52

Robustness under Increasing Uncertainty. To demonstrate the importance of optimiz-

ing for the adversarial case, we perform an experiment where we simulate the effect of adding

many low-quality, high-variance reviewers to the MIDL dataset (used in Chapter 2), and a

similar experiment where we systematically overestimate some of the affinities for a subset of

papers. These reviewers can often appear in modern conference reviewing. PhD students

with few papers will tend to have higher variance in true expertise relative to document-based

similarity scores derived from their prior work, while reviewers with fewer bids will tend

to have higher variance in true interest relative to their bids. Intuitively, the systematic

overestimation of papers’ affinities can occur when paper authors submit a keyword that does

not have the exact meaning they expected or is listed by reviewers in the wrong subcommunity.

We believe that this occurs quite often, and leave a rigorous examination of this important

question to future work.

We assume the true affinity of the 177 original reviewers for each paper is equal to the

affinity score present in the public dataset, but is noisily estimated. Thus, we assume that the

conference organizers have access to estimated affinity scores which are equal to the original

affinity scores plus normally distributed noise, Normal(0, .02). We also assume the conference

organizers know that the estimation error is distributed according to Normal(0, .02) for each

request-expert pair. We also add a number of “dummy” reviewers to the dataset. For each
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Figure 4.2: Left: True welfare (as percentage of optimal, when V∗ is known) of naïve
LP approach vs. Algorithm 8 on MIDL 2018 dataset with increasing number of “dummy”
reviewers. Right: True welfare on MIDL 2018 dataset with increasing number of noisy papers.

dummy reviewer, we set the true affinity of that reviewer to be .1 for all papers, and sample

the estimated affinity from Normal(.1, .15). As with the original reviewers, we assume the

conference organizers know the estimation error is distributed according to Normal(0, .15)

for each request-expert pair. This simple setup implies a multivariate Gaussian distribution

over the true affinity scores, which are unknown to the conference organizers. We take a

95% confidence interval of this distribution and intersect it with the unit hypercube to define

a truncated-ellipsoidal uncertainty set. We then assign reviewers using the naïve LP and

Algorithm 8, and compare the true, but unknown, welfare for each approach.

For the setting with noisy papers, we take a subset of papers and identify the 20th to 30th

(non-inclusive) ranked reviewers for each paper in decreasing order of affinity. For each paper,

we add .3 to the estimated affinity for those 10 reviewers. We then assume that conference

organizers estimate the standard deviation of these request-expert pairs to be .15, while the

remaining standard deviations are estimated at .02.

The results are shown in Figure 4.2. We report the welfare of naïve LP and Algorithm 8

as a percentage of optimal, averaged over 100 runs per number of dummy reviewers/papers.
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We also report the minimum and maximum over all 100 runs for each setting. As we add

more dummy reviewers or noisy papers, the true welfare of the naïve LP approach drops by

up to roughly 15%, while Algorithm 8 maintains high true welfare.

2 4 6 8
Standard Deviation Scale

0

1

2

C
V

aR
0.

01
[W

]

Welfare
USW
GESW
Robust Concept
CVaR
None

(a) AAMAS 2015

2 4 6 8
Standard Deviation Scale

0

1

C
V

aR
0.

01
[W

]

Welfare
USW
GESW
Robust Concept
CVaR
None

(b) AAMAS 2016

2 4 6 8
Standard Deviation Scale

0.4

0.6

0.8

C
V

aR
0.

01
[W

]

Welfare
USW
GESW
Robust Concept
CVaR
None

(c) AAMAS 2021

Figure 4.3: CVaR0.01 as noise increases for all three datasets, using the estimated Gaussian
distribution.

We perform a similar experiment for the AAMAS datasets, to demonstrate the impact of

increasing noise on the CVaR metric. Figure 4.3 shows the CVaR0.01 on the Gaussian version

of all three datasets as we artificially increase the amount of noise. We multiply the standard

deviations of the Gaussian distributions by a scalar and optimize for the CVaR or the central

estimate of the USW and GESW. We then plot CVaR0.01 as noise increases. Although the

CVaR approach is less important at low noise levels, the CVaR of welfare decreases for both

welfare measures as noise increases. GESW has a sharper decline than USW. We see that as

the noise increases, the CVaR0.01 of the baseline USW and GESW maximizing allocations

drops off relative to the same value for the CVaR-optimized allocation.

Runtime. Finally, for the soft robust optimization setting with ellipsoidal uncertainty

sets (derived from confidence intervals over the Gaussian process matrix factorization), we

compare the IQP approach Corollary 4.4.17 to projected sub-gradient ascent on the original

max-min problem. We find that IQP converges much faster than the subgradient ascent
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Figure 4.4: Convergence behavior of the Iterated Quadratic Program (IQP) vs. Adversarial
Projected Sub-gradient Ascent approach on AAMAS 2015 and 2016, solving for utilitarian
welfare under the estimated Gaussian distribution.

algorithm; see Figure 4.4. Sub-gradient ascent fails to converge in 1, 000 iterations for the

adversarial GESW objective on all datasets and the USW objective on AAMAS 2021.

4.7 Costs of Accounting for Uncertainty

In this and the previous chapter, we outlined an end-to-end pipeline for predicting response

quality and then assigning experts to requests accounting for uncertainty in predictions.

However, accounting for uncertainty requires compromising on other deciderata. In Chapter 2,

we focused primarily on the deciderata of fairness to individual requests, welfare efficiency,

computation speed, and algorithmic simplicity. Our robustness concepts target welfare

efficiency measures, so there is no trade-off for that objective. We show that group egalitarian

welfare can be robustly optimized, but it is not generally possible to have robustness on

individually fair objectives like egalitarian welfare [91, 157]. It may be possible to have

robustness over aggregates of individual measures; for example, the sum of the total envy

between papers. Though we did not analyze that objective here, similar techniques to those
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outlined in this chapter can be used. In addition, the robust objectives we optimize for in

this chapter can be augmented with additional bounds on the central estimates of valuation

matrices, for example optimizing for CVaR or robust welfare subject to the constraint that

our allocation must be EF1 on the centrally-estimated valuations. This additional constraint

may result in extra space and runtime requirements, but is not a fundamental limitation.

No matter the approach, robustness to uncertainty necessarily introduces additional

complexity and runtime. The degree to which the additional runtime and implementation

complexity overshadows the benefits of robustness depends on the degree of noise in the

valuations. However, as discussed in Section 3.2, it is very challenging to obtain data linking

inputs and outputs for reviewer assignment. Thus, we must leave to future work the question

of exactly how much noise exists in predictions of downstream review quality.

4.8 Conclusion

In conclusion, we explore the stochastic and robust optimization regimes for utilitarian

and group-wise welfare objectives. The robust optimization algorithms depend on the form

of the uncertainty set. Some special cases of uncertainty sets (singleton, hyperrectangular,

or spherical) reduce to problems without uncertainty, which can all be solved via linear

programming. The general problem is NP-hard, and our adversarial projected sub-gradient

ascent algorithm provides approximate solutions with error guarantees dependent on the

uncertainty set. We show that when the uncertainty set has linear constraints only, the

resulting problem is an LP and can be solved efficiently. Under ellipsoidal constraints,

we demonstrate an iterative quadratic programming approach converges much faster than

adversarial projected sub-gradient ascent for utilitarian welfare. In the stochastic regime, we

lay out the sample complexity of CVaR for the utilitarian welfare objective.

We show two natural settings where the robust optimization approach recovers a higher

welfare than the naive approach using central estimates of valuations. Using a simple model,
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we show that the worst-case welfare on 5 years of conferences simulated from real ICLR data

is much better using adversarial projected sub-gradient ascent than any existing approach.

We also demonstrate the feasibility of estimating probability distributions and uncertainty

sets on three years of bid data from AAMAS, and show that the robust and CVaR approaches

combat the uncertainty present in these three datasets. Together with the valuation estimation

discussion in Chapter 3, we have proposed an end-to-end pipeline for expert assignment.
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CHAPTER 5

CONCLUSION

This thesis proposes an end-to-end pipeline for fast, efficient, fair, and robust expert

assignment. In Chapter 2, we modify classic techniques from the fair division literature to

obtain a fast, fair, and efficient expert assignment algorithm. In Chapter 3, we demonstrate

through an end-to-end example how using past performance of experts can help improve expert

assignments. Chapter 4 shows how, given these predictive distributions or high-probability

uncertainty sets, we can optimize for high quality expert assignments. We hope that this

work encourages further exploration of data driven expert assignment as a general problem.

The most important next step for the work of Chapters 3 and 4 is to demonstrate its utility

in real conference settings.
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as Chapter 3 shows. I hope to continue this thread of research in the future.

161



APPENDIX

ADDITIONAL METRICS FROM STACKEXCHANGE
EXPERIMENTS

Figure A.1 shows the performance of all methods on the 5th percentile of user’s historical

probability of upvote given vote for all StackExchange websites. This metric is very similar

to the median of user’s historical performance (Figure 3.5).
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Figure A.1: Comparison of all models on 5th percentile of historical probability of upvote
given vote, on all 4 StackExchange websites.

Figure A.2 shows performance measured by the keyword matching score. This measure

shows different behavior to the cosine similarity measure (Figure 3.8), which is also a

content-based similarity measure. Here, we see that the predictive model outperforms the

non-predictive baseline on keyword similarity on two StackExchanges. It is possible that the

predictive model is choosing to rely on either keyword-based similarity or cosine similarity,

depending on the dataset.

Figure A.3 shows performance as measured by average of the assigned users’ reputation

scores. In comparing the predictive model and the non-predictive baseline, these plots reflect
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Figure A.2: Comparison of all models on keyword matching score, on all 4 StackExchange
websites.
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Figure A.3: Comparison of all models on user reputation, on all 4 StackExchange websites.

what we already observed from Figures 3.5, 3.6 and A.1, that the predictive model outperforms

all models on measures of positive user historical features. However, we do see a marked

decrease in the performance of the trained user embedding model, which is curious. Perhaps

this implies that past a high enough reputation threshold, reputation is useful for predicting

performance but not essential.

Finally, we present Figures A.4 and A.5 showing the assigned users’ average LLM-

annotated “Informativeness” and “Relevance” over previous answers. These results do not

add much to the discussion over the results on “Usefulness” in Figure 3.6.
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Figure A.4: Comparison of all models on LLM-annotated “Relevance” score, on all 4 Stack-
Exchange websites.
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Figure A.5: Comparison of all models on LLM-annotated “Informativeness” score, on all 4
StackExchange websites.

A.1 Correlation of Rankings

Figures A.6, A.8, A.10 and A.12 display the average correlations (over 1,000 samples)

of the rankings over assignments produced by each metric. High positive values indicate

the metrics tend to rank assignments in the same order, low negative values indicate the

metrics tend to rank assignments in opposite order. Values near zero indicate low correlation

in rankings in either direction. The p-values of these statistics are displayed in Figures A.7,

A.9, A.11 and A.13.
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Figure A.6: Correlation of ranking of assignments by each metric for cs.
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Figure A.7: P-values for correlation of ranking of assignments by each metric for cs.
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Figure A.8: Correlation of ranking of assignments by each metric for biology.
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Figure A.9: P-values for correlation of ranking of assignments by each metric for biology.
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Figure A.10: Correlation of ranking of assignments by each metric for chemistry.
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0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.2

0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.2

0.2 0.3 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.2

0.2 0.3 0.3 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.0

Figure A.11: P-values for correlation of ranking of assignments by each metric for chemistry.
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Keyword Match Score

Median Past p(Upvote)

Predicted Score (Expected)

Predicted Score (LB)

User Reputation

Past Informativeness

Past Usefulness

Past Relevance

1.0 0.4 -0.1 -0.6 -1.0 -1.0 -1.0 -0.8 -0.8 -0.9 -0.9

0.4 1.0 -0.1 -0.0 -0.4 -0.4 -0.4 -0.4 -0.2 -0.3 -0.3

-0.1 -0.1 1.0 0.7 0.2 0.2 0.2 0.5 0.4 0.4 0.4

-0.6 -0.0 0.7 1.0 0.7 0.7 0.7 0.8 0.8 0.8 0.8

-1.0 -0.4 0.2 0.7 1.0 1.0 1.0 0.9 0.9 0.9 0.9

-1.0 -0.4 0.2 0.7 1.0 1.0 1.0 0.9 0.9 0.9 0.9

-1.0 -0.4 0.2 0.7 1.0 1.0 1.0 0.9 0.9 0.9 0.9

-0.8 -0.4 0.5 0.8 0.9 0.9 0.9 1.0 0.9 0.9 0.9

-0.8 -0.2 0.4 0.8 0.9 0.9 0.9 0.9 1.0 0.9 1.0

-0.9 -0.3 0.4 0.8 0.9 0.9 0.9 0.9 0.9 1.0 1.0

-0.9 -0.3 0.4 0.8 0.9 0.9 0.9 0.9 1.0 1.0 1.0

Figure A.12: Correlation of ranking of assignments by each metric for academia.
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Past Usefulness

Past Relevance

0.0 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.5 0.6 0.2 0.2 0.2 0.2 0.4 0.3 0.3

0.6 0.5 0.0 0.0 0.6 0.6 0.6 0.1 0.2 0.2 0.2

0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure A.13: P-values for correlation of ranking of assignments by each metric for academia.
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