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ABSTRACT: The main aim of this work is to develop a software tool for water distribution system modeling by coupling 

Artificial Neural Network (ANN) with real time flow and pressure data from the system. This tool helps in predicting the future 

state of the system, i.e. the flow in every pipe, pressure at every node and reservoir levels, for a given set of sensor readings at 

the current time step. The study helps to perform an ANN based sensitivity analysis of the network, and it can be extended to 

sensor placement optimization and demand prediction. Here, we have utilized feed forward artificial neural network with three 

hidden layers to predict water level in Bangalore inflow model. To compensate for practical sensor error, random noises were 

added in the training data set. The objective of this work is to create a collection of ANN if there is a well know question (state) 

we can instantaneously answer with help of the model. Genetic algorithm was used to optimize the network architecture. 

Gradient descent, and resilient back-propagation were used as training algorithms. In this research work, it was observed that 

the computational cost of the ANN based model is less than that of classical modeling approaches and hence can be used to 

replace hydraulic based tools for system state estimation. In addition, the normalized root mean squared error of our best model 

is around 0.05, meaning that little information would be lost by replacing a classical model with the neural network model. 
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INTRODUCTION 

 

Water Distribution Systems (WDS) modelling has 

played a substantial part in system management and daily 

operational practices. Modelling of WDS using software 

like EPANET, WaterGEMS, Tandler etc. in the course of 

time enabled the water authorities to make informed 

decisions regarding water allocation. Since the advent of 

low cost sensors and flow measurement devices, there 

have been enormous amounts of real time data available 

with water authorities for decision making. Integrating 

this real time flow and pressure data with the hydraulic 

models will help us in real time even detection and 

localization like leak location, contaminant source 

detection, demand prediction etc. This work presents a 

novel approach for integrating the real time data for state 

estimation of the WDS using Artificial Neural Networks 

(ANNs). 

Artificial Neural Networks (ANNs) are a type of 

machine learning models inspired from central nervous 

systems. In the past it was observed that ANNs are 

efficient in many modelling environmental systems and 

their underlying phenomenon. They have been found to 

accurately model the export of nutrients in surface water 

bodies, forecast salinity, ozone levels, air pollution, land 

use patterns, forecast loading in power systems, 

groundwater depth fluctuations etc. (Maier and Dandy, 

2001; Almeida et.al, 2008; Park et.al, 1991; Coulibaly 

et.al, 2001). In WDS, ANN models were used for design 

optimization, event detection, parameter forecast and 

prediction. Rodriguez et.al (1997) presents an ANN 

based approach for predicting residual chlorine in WDSs. 

Milot et.al (2002) compared ANN models with regression 

models (logistic and multivariate) for predicting THM 

levels in water systems. It was observed that ANN model 

performed better than regression models. ANN was also 

used for developing consumer demand forecast models 

for predicting long term and short term water demands 

(Jain and Ormsbee, 2001; Romano and Kapelan, (2014a). 

Broad et.al (2006) used ANN based meta-models for 

WDS design and optimization and it was found to perform 

better than/ comparable to Genetic Algorithm (GA) based 

optimization methodology. An ANN-GA based meta-

model with less runtime was proposed in the study. 

Goncalves et.al (2011) proposed a hybrid model using 

ANN for WDS optimization in a case study of a Portugal 

WDS. ANN based methodology have been proved to be 

useful in leak event detection as well in the recent years, 

provided that a time series data of leak events in the 

network are available. Romano et.al (2014b) coupled real 

time data from the networks, ANN and hydraulic model 

to detect leaks events in WDS. But in most of the studies, 

the authors have used ANN methods coupled with 

classical WDS modelling tool for analysis. In this study, 

we are introducing a data driven methodology for 

modelling the WDS, there by replacing the conventional 

modelling tools. 

 

STUDY AREA 

 

Bangalore inflow system supplies about 910 MLD of 

water to a vast population of 10 million dispersed across 

the 760 km2 area of Bangalore. This 910 MLD of water is 

pumped from Torekadanahalli (TKH) Water Treatment 

Plant water treatment plant about 100 kms away from the 

city and at an elevation of about 400m in 4 stages of 

pumping and is distributed to 52 reservoirs of varying 

capacity across different locations in the city, from which 

the water is supplied to the consumers. Cauvery Water 

Supply Scheme (CWSS) which supplies water to the 

Bangalore city has four stages of supply and the capacities 

of these stages are shown in Table 1 (Manohar and Mohan 

Kumar, 2014).  

Table 1 Capacities of different stages of Cauvery Water 

Supply Scheme 

 

The Bangalore inflow network consists of 500 

junctions, 55 Ground Level Reservoirs (GLRs), 516 pipes, 

85 pumps and 156 valves (Figure 1). The inflow system 

is instrumented with 216 flow meters; the main objective 

of this work is to develop an ANN based tool for state 

estimation of Bangalore inflow system using these 216 

flow meter readings. Here, state of the system denotes the 

water levels in the GLRs. 

 

 

ARTIFICIAL NEURAL NETWORKS 

 

ANNs operate as a parallel processor, where there are 

many processing units interconnected to give the outputs. 

It consists of an input layer, one or more hidden layers and 

an output layer, which are connected to each other. Each 

layer is formed with one or more neurons or Processing 

Elements (PE) and output of the PE in one layer forms the 

input to the PE in the next layer. Figure 2 is a schematic 

of the widely used model called the multi-layered 

perceptron (MLP) of ANN.  The MLP type ANN consists 

of one input layer, one or more hidden layers and one 

Source (supply 

scheme) 

Established 

(Year) 

Supply (MLD) 

Stage-I 1974 140 

Stage-II 1983 140 

Stage-III 

Stage-IV – Phase 1 

Total Supply 

1993 

2002 

315 

315 

910 



Anjana, et al.  

298 

output layer. The output of the neuron i, hi in the hidden 

layer is 

      ℎ𝑖 = 𝜎 (∑ 𝑤𝑖𝑗𝑥𝑗 + 𝜃𝑖

𝑁

𝑗=1

)                                             (1) 

 

Fig. 1 Schematic of Bangalore Water Supply inflow 

system (55 GLRs) 

 

Here, s is the activation (transfer) function, N is the 

number of neurons, 𝒘𝒊𝒋the weights, xj inputs to the neuron, 

and 𝜃𝑖the threshold term of the hidden neuron i. ANNs are 

well suited for environmental modelling as they are 

nonlinear in nature, relatively insensitive to data noise, 

and can perform well even when limited data are available 

(Maier and Dandy, 2001). In this study, resilient back 

propagation based ANN was used for modelling WDS 

with different combination of selection methodology and 

optimization techniques.   

 

 

METHODOLOGY 

 

In this study the authors have chosen n number of 

pipes randomly from the WDS and the flow in the pipes 

are used for training the ANN model to predict the water 

levels in the GLRs. EPANET is used for generating the 

training data set for ANN model. In this model, the 

hyperbolic tangent function is used as the transfer 

function s.  And the results are compared to that of 

classical modelling technique.  

 

Fig. 2 Schematic of an ANN (MLP) 

 

 

CLASSICAL MODELING METHOD 

 

Traditional modelling techniques in WDS are based 

on the principles of conservation of mass and energy. 

According the theorem of conservation of mass, the fluid 

mass that enters the pipe will be equal to the fluid mass 

leaving the pipe (fluid is neither created nor destroyed in 

hydraulic systems). This can be represented as 

 

      ∑ 𝑄𝑗 −
𝑁𝑖
𝑖=1 𝐷𝑖 = 0                                                           (2)   

 

where Qj = flow rate in pipe j, Ni = number of pipes 

connected to node i, Di = demand at node i. 

Conservation of energy states that the difference in 

energy at any two points connected in a network is equal 

to the energy gained from pump and energy lost in pipes 

and fittings that occur in the path between them, i.e. 

 

      ∑(𝛥𝐻𝑗 +  𝛥𝑀𝑗 –

𝑁𝑘

𝑗=1

𝐸𝑗) − 𝛥𝐸𝑘  = 0                            (3) 

 

where, ΔHj = head loss in pipe j, ΔMj = minor loss in pipe 

j, Ej = energy added by a pump if there is a pump in pipe 

j, Nk = the number of pipes within the loop k, ΔEk = 

difference in water surface elevation between the two 

constant head boundaries if k represents a path between 

the two boundaries. For calculating the head-loss along a 

pipe, Hazen-Williams head loss equation is utilized: 

 

      ℎ𝑙𝑜𝑠𝑠(𝑓) = (
10.71𝑙𝑝

𝐶1.852 𝐷𝑝
4.87

) 𝑄𝑝
1.852                                 (4) 
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EPANET (Rossman, 2000), is an open-source software 

developed by EPA for network analysis. It uses Todini-

Pilati (1987) method for calculating the pressure at every 

node, flow in pipes, tank levels etc. given boundary 

conditions. In this study, EPANET model for Bangalore 

Inflow network was built using the data given by 

Bangalore Water Supply and Sewerage Board (BWSSB). 

And the data from the EPANET model simulation was 

used for training the ANN model. Details of the EPANET 

model (GLR locations, Valves etc.) can be inferred from 

Figure 1. 

 

 

ANN BASED MODELING 

 

A total of 48 sets of training data are available; the 

training data is generated from EPANET simulation of 

Bangalore inflow network. The inputs imposed are the 

pipe flow, and it is trained to predict the water levels in 

the 55 GLRs around the city. The MLP network in this 

study has three hidden layers with 23, 26 and 28 neurons 

respectively. Genetic algorithm was used to select the 

architecture of the ANN model (Arifovic and Gencay, 

2001). Two different training algorithms are used in this 

study: Gradient descent method (Battiti,1992) and 

Resilient back-propagation method (Riedmiller and 

Braun,1993). 

 

 

GRADIENT DESCENT METHOD  

 

The gradient descent algorithm is used to minimize 

the error (difference between the target and actual values), 

through the manipulation of a weight vector w. The error 

function should be a linear combination of the weight 

vector (w) and an input vector x. 

 

      𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) + ηg (𝑤𝑖𝑗(𝑡))                          (5) 

 

Here, g is the error function or the cost function in this 

case, and η is known as the step-size parameter, and 

affects the rate of convergence of the algorithm. If the step 

size is too small, the algorithm will take a long time to 

converge. If the step size is too large the algorithm might 

miss the optimal solution. 

 

 

RESILIENT BACK-PROPAGATION METHOD 

 

Resilient back-propagation algorithm is similar to the 

regular back propagation algorithm, but it is faster than 

the latter since it does not require the value of the learning 

rate. In this method, an individual update value is 

designated to each weight, which solely determines the 

size of the weight-update. This adaptive update-value 

evolves during the learning process based on its local 

sight on the error function, according to a specific learning 

rule. Every time the partial derivative of the 

corresponding weight wij changes its sign, which indicates 

that the last update was too big and the algorithm has 

jumped over a local minimum, then the update-value ∆ij 

is decreased by the factor η-. If the derivative retains its 

sign, the update-value is slightly increased in order to 

accelerate convergence in shallow regions. Once the 

update-value for each weight is computed, the weight-

update itself follows a very simple rule: if the derivative 

is positive (increasing error), the weight is decreased by 

its update-value and if the derivative is negative, the 

update-value is added to the weight. 

 

 

PIPE SELECTION ALGORITHMS 

 

In this study, the authors have used four different 

methods for selecting the flow data to be used in training 

the ANN model. They are i) Random method ii) Principal 

Component Analysis (PCA) iii) Pearson’s Correlation 

Coefficient (PCC) iv) Shannon Entropy (SE).  

In the Random method, a random set of 20 pipe flow 

data are selected from the 516 pipes in the system. In the 

PCA method, initially a random set of 200 pipes are 

selected and then PCA analysis is carried out on these 200 

pipes to form 20 linearly uncorrelated principal 

components.  Then the strongest contributing pipe to each 

of the 20 principal components with the highest 

coefficient in the linear combination is selected. The data 

from these 20 pipes are used in further modelling.   

In the PCC method, initially both the input and the 

output time series are normalized. Then the Pearson’s 

correlation coefficient between all 55 GLR water level 

time series and all 200 pipe flow time series is calculated. 

Pearson’s correlation coefficient ρ, between two random 

variables X and Y: 

      𝜌𝑋,𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋 𝜎𝑌

                                                        (6) 

Where, Cov(X,Y) is the covariance of X and Y, and s is the 

standard deviation of the random variable. Ρ value is 

summed for all the GLRs in the network and 20 pipes with 

the highest sum of squared Pearson’s coefficient are 

selected.  

Shannon Entropy (SE) for a random variable s is 

defined as: 

 

       𝐻(𝑆) = ∫ 𝑃(𝑠) log(𝑃(𝑠)) 𝑑𝑠                                    (7) 
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Where, P(s) is the probability density function of s. 

The theory behind this method of pipe selection is that the 

least predictable pipe flows will provide the largest 

amount of information to the artificial neural network. 

Entropy is a measure of the unpredictability of the 

variable, so the 20 most unpredictable pipe flows were 

selected with this method.  

Each of these methods was iterated 500 times, 

selecting 200 random pipes each time, and whittling it 

down to 20. The final selected set for any of the four 

methods consists of the 20 (distinct) most commonly 

selected pipes. 

 

 

PERFORMANCE INDICATORS 

 

Three different performance indicators are used in this 

study. They are i) Mean Absolute Percentage Error 

(MAPE) ii) Root Mean Squared Error (RMSE) and iii) 

Normalized Root Mean Square Error (NRMSE). All the 

above mentioned indices are calculated for the GLR water 

levels (the difference between simulated and ANN output 

water level). Here, NRMSE is the normalized value of 

RMSE, 

 

      𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

max(𝑤𝑛) − min (𝑤𝑛)
                             (8) 

 

Here, wn denotes the water level in GLR n.  

 

 

RESULTS AND DISCUSSION 

 

It was found that the ANN based modelling of 

Bangalore inflow network was able to reproduce the 

EPANET model results with an acceptable range of error. 

The error rates for the neural networks derived from the 

four pipe selection methods is found in Table 2. For the 

ANN model training, resilient back-propagation is more 

accurate than gradient descent. Earlier literature on ANN 

network training comply with the above observation for 

modelling environmental systems.  

The ANN models derived from the four pipe selection 

methods were tested against an ANN model derived from 

the already existing flow meters in the WDS and it was 

found that the models are performing well in comparison. 

For the existing flow meter locations, the model obtains 

an RMSE of 0.6859, NRMSE of 0.0722, and MAPE of 

14.23%.  

PCA method for pipe selection performs better than 

the other methods. All three pipe selection methods (PCA, 

SE, and PCC) consistently produce more accurate neural 

network models than randomly selecting pipes. 

Furthermore, it appears that these pipe selection methods 

produce more accurate neural networks than simply using 

all 58 of the sensor locations that are currently in the 

actual network. Thus, our experiments lead us to believe 

that real-life sensor placement could benefit from our pipe 

selection model. 

 

Table 2: Comparison of Resilient Back Propagation and 

Gradient Descent algorithms for ANN Model training 

 

Resilient Back-Propagation 

 NRMSE RMSE MAPE 

Random 0.0783 0.7443 15.99% 

PCA 0.0544 0.5172 11.01% 

PCC 0.0523 0.4965 11.23% 

SE 0.0538 0.5110 11.49% 

Gradient Descent 

Random 0.1352 1.2844 45.53% 

PCA 0.1190 1.1307 38.29% 

PCC 0.1388 1.3185 48.35% 

SE 0.1911 1.8157 74.28% 

 

In addition, the time taken for prediction is quite fast. 

Taking the total runtime for prediction for the 150 test 

data and averaging, we find that the average runtime for 

predicting all 55 tank levels in a given time period is 0.1 

milliseconds. In addition, both resilient back-propagation 

and gradient descent train the full model in under ten 

seconds. This improvement in speed could justify use of 

an ANN model in place of a traditional state estimation 

model. In cases of very complex networks, the state 

estimation may in fact be impossible without the 

computational efficiency of the ANN model. Even in 

simple water networks, the amount of data generated is 

massive in a real-time SCADA system. Dealing with this 

amount of real-time sensor data requires a fast-responding 

model. The speed of the ANN also allows constant 

retraining of the neural network in a real-time system. 

Retraining a system daily, or perhaps weekly, could help 

reduce drift in prediction accuracy caused by new leaks, 

non-revenue water demand, variations in temperature, 

and various other changes.  

One other benefit of using an ANN model is that there 

are relatively few parameters to optimize. The genetic 

algorithm optimizes the number of hidden layers as well 

as the number of nodes in the hidden layers, and there are 

a number of possible methods for pipe selection. The 

other parameters are the training algorithm and the 

transfer function for the hidden layers. This is much 

smaller than the plethora of parameters that must be 

initialized in an EPANET model. 

Multiple training functions were explored. However, 

as speed of training was considered to be of high 

importance, the only two functions that achieved 

reasonable accuracy in a short amount of time were the 
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resilient back propagation and the gradient descent 

methods.  

Despite its promise, there are a few observations to 

make about the limitations of the system. Firstly, PCA and 

PCC are limited because they only measure linear 

variation. PCA reflects which pipes are most important 

when linear combinations of pipes are chosen as principal 

components. However, there may be a pipe which gives a 

nonlinear contribution to the flow readings. PCC likewise 

measures the linear correlation between the pipe flows 

and the GLR levels. Replacing PCC with a nonlinear 

measure of correlation has the potential to drastically 

reduce error. One possible option would be to run a 

nonlinear regression on the dataset, then select the pipes 

with the largest absolute value coefficients. Nonlinear 

regression is of course a challenging task in itself, and 

many papers could be devoted to the use of nonlinear 

regression as the entire water level prediction model. 

Another option might be to use a metric typically 

employed in time series analysis to measure causality, 

such as Granger causality. Such a metric could more 

effectively select which pipes truly drive variations in 

tank levels, rather than selecting pipes that seem to be 

correlated with the tank levels. Graph theoretical methods 

may also be very useful in pipe selection. From Figure.4 

it is observed that the developed ANN model works well, 

since the NRMSE plot for the model with actual sensor 

location data is similar to Figure.3. 

 

Fig. 3 NRMSE for GLRs water level  
 

It is apparent that while the neural network model 

achieves relatively low error on most of the 55 GLRs, the 

average error rate is dragged up by its performance on a 

handful of GLRs. The GLRs with the top five NRMSEs 

are 34, 36, 42, 50, and 26. The tanks with the top five 

highest standard deviation in tank level are 37, 33, 34, 4, 

and 53. The tanks with the top five highest average levels 

are 35, 12, 51, 41, and 5. The tanks with the top five tank 

level ranges (max – min) are 35, 42, 33, 53, and 4. Finally, 

the tanks with the largest Shannon entropy are 35, 12, 51, 

33, and 41. No clear pattern emerges, though it appears 

that the tanks with the highest error have a combination of 

large range and large standard deviation. Strangely, 

entropy of the tank seems to have little effect on the error 

rate. The simplicity of these metrics does not compare 

with the complexity of the artificial neural network, so 

maybe there is no way of knowing why the neural network 

does not perform well on certain tanks. Perhaps the best 

way to mitigate these areas of poor performance is to train 

multiple neural networks and use them for different 

subsets of the tanks. Multiple neural networks are likely 

to perform more effectively on different subsets of the 

tanks. 

Of course, the neural network models must be 

validated against field data in order to truly trust their 

predictive powers. However, collection of field data is 

quite expensive and time-consuming. In addition, the 

neural network is useful precisely because we often 

cannot obtain real-time field data. Thus further empirical 

validation of the model will be quite challenging. 

 

Fig. 4 NRMSE for GLRs water level (ANN using actual 

flow meter) 

 
In the end, this neural network could be a single piece 

in a larger smart water distribution system designed to 

perform demand prediction, leak localization, online 

adjustment of flows, and more.  

 

 

CONCLUSIONS 

 

This work aims at developing an ANN based software 

tool for WDS modelling. In this study, two different 

training algorithms and 4 different pipe selection methods 

are being compared. It was found that the resilient back-

propagation method for ANN training performs better 

than gradient descent method. Also, it was observed that 

PCA method is efficient in pipe selection for model 

building and it performs better than PCC and SE methods. 

It is to be noted that this approach can also be extended 

for finding out the optimal location of flow meters for 

WDS modelling in real time. This model was validated 

using the already existing flow meters locations in the 
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system and it was found to perform well. Hence, this ANN 

based model can be used to replace the classical model for 

Bangalore inflow network for real time state estimation. 
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