Fairness in Peer Review

Peer review is a central component in academic decision-making. For it to work, papers must be reviewed by suitable reviewers! Wrong reviewers = poor feedback, unfair rejection, acceptance of flawed papers.

Typical Constraints:
- Papers require certain # of reviewers
- Limits on # of papers per reviewer
- Can’t assign reviewer to a paper twice

Example - papers require 2 each, reviewers get 1 each

- 6 5 3 2
- 9 6 3 1

Simply maximizing total welfare can harm individual papers, so we seek to guarantee fairness for all papers.

Picking Sequences: Fair & Simple

Papers pick one reviewer per round in fixed order over rounds. Requires uniform demands.

Goal: Approximately maximize welfare under Round Robin & Weighted Picking

Fairness and Welfare under Picking Sequences

- **Round Robin**
 - Envy-free up to 1 Item (EF1)
 - Picking sequences are fair, but overall welfare depends on order
 - Example - Round Robin

 - **Weighted Picking**
 - Weighted EF
 - Picking sequences are fair, but overall welfare depends on order

 - Example - Weighted Picking

Greedy Reviewer Round Robin (GRRR)

Maintain a partial order for Round Robin.
Append the paper which maximizes USW of partial order.

Greedy Weighted Picking (FairSequence)

Execute Weighted Picking, break ties in priority greedily.

Real Conference Results

<table>
<thead>
<tr>
<th>Conference</th>
<th>MIDL</th>
<th>Our Approaches</th>
<th>USW (% of OPT)</th>
<th># EF Viol.</th>
<th>TPMS (OPT)</th>
<th>FairFlow</th>
<th>PR4A</th>
<th>GRRR</th>
<th>FairSeq</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVPR</td>
<td></td>
<td></td>
<td>100%</td>
<td>0</td>
<td>100%</td>
<td>96%</td>
<td>94%</td>
<td>88%</td>
<td>92%</td>
</tr>
<tr>
<td>CVPR '18</td>
<td></td>
<td></td>
<td>100%</td>
<td>134</td>
<td>97%</td>
<td>97%</td>
<td>94%</td>
<td>94%</td>
<td>96%</td>
</tr>
</tbody>
</table>

Goals:
- Fairness
- GRRR and FairSeq are the only approaches that satisfy EF1
- Welfare
- High USW w.r.t. TPMS (OPT) and algorithms used in practice
- Speed
- >5x speedups compared to FairFlow/PR4A
- Flexibility
- Simplicity → Flexibility

FairSequence is now available in OpenReview!
Ask your conference organizer today if FairSequence is right for you!

Ask your conference organizer today if FairSequence is right for you!

Justin Payan & Yair Zick
UMass Amherst
College of Information & Computer Sciences

Read the full paper on arxiv: arxiv.org/abs/2108.02126 justinpayan.github.io