Graphical House Allocation

Graphical House Allocations

Given n agents N, n houses H, identical valuations $v: H \rightarrow \mathbb{R} \geq 0$, and an undirected graph $G=$ Given n agents N, n houses H, identical valuations $v: H \rightarrow \mathbb{R} \geq 0$, and an undirected graph $G=$ find an allocation π^{*} that minimizes $\sum_{(i, j) \in E}\left|v\left(h_{i}\right)-v\left(h_{j}\right)\right|$.
We assume that $H=\left\{h_{1}, \ldots, h_{n}\right\}$, with $v\left(h_{1}\right) \leq \ldots \leq v\left(h_{n}\right)$.
The values of H can be represented as marks on an interval of the real numbers. Any allocation each edge of G. We wish to find the allocation that minimizes the sum of the lengths of thes line segments.

	Envy=15				
$h_{3} \quad h_{5}$	h_{1}	h_{2}	h_{3}	h_{4}	h_{5}
,	1	2	4	5	6
$h_{1} \quad h_{4} \quad h_{2}$					

Figure 1. (Left) Graph on five agents with an allocation π. (Right) Envy along the edges of G displayed in red as separate line segments. The total envy is 15

Motivation

Graphical House Allocation is a natural constraint, as stakeholders only care about the ones they interact with

- We want to get structural insights into graphs to understand the algorithmic problem at its fundamentals.
Note: The problem of minimum-envy house allocation on a graph is similar to the work of Beynier et al. [2019], though we restrict to identical valuations and investigate more classes of graphs. Our problem is the classical problem when G is the complete graph K_{n}.

Linear Arrangements

The classical minimum linear arrangement problem (MLA) asks the same question, when the values (the range of the function v) are equally spaced on the interval, i.e. WLOG they form the set $\{1, \ldots, n\}$.
It is known that MLA is NP-hard on general graphs and even bipartite graphs [Garey et al., 1976]. However, MLA on trees, forests, and many other simple classes of graphs is polynomial time [Chung, 1984].

Hardness

he values are in $\{0,1\}$

Pf. There is a straightforward reduction from the Minimum Bisection problem on a graph G to Pf. There is a straightforward reduction from the Minimum Bisection proble
the minimum-envy house allocation problem on G with the values in $\{0,1\}$.
Corollary. Even when valuations are in the interval $[0,1]$, the graphical minimum-envy house Corolary. Even when valuations are in the interval $[0,1]$, the graphical minimum-envy
allocation problem is hard to approximate within an additive factor of $n^{2-\epsilon}$ for any $\epsilon>0$.

Connected Graphs

Theorem. If G is the star $K_{1,}$ then the minimum-envy allocation π^{*} under identical valu ions Theorem. If G is the star $K_{1, n}$, then the minimum-env allocation π^{*} under identical valuations assigns a median of the values in the center of the star, and the rest on the spokes in any order.

Theorem. If G is the path P_{n}, then the minimum-envy allocation π^{*} under identical valuations attains a total envy of $v\left(h_{n}\right)-v\left(h_{1}\right)$, and places the houses in sorted order along P_{n}.

Theorem. If G is the cycle C_{n} then any minimum-envy allocation π^{*} under identical valuations attains a total envy of $2\left(v\left(h_{n}\right)-v\left(h_{1}\right)\right.$), and corresponds to placing h_{1} and h_{n} arbitrarily on any two vertices of the cycle, and the remaining houses so that each of the two paths from h_{1} to h_{n} along the cycle consists of houses in sorted order.

Theorem. If G is the complete bipartite graph $K_{r, s}(r \geq s)$, the minimum-envy allocation π^{*} allocates the least valued and highest valued $(r-s) / 2$ houses to the larger side, and the remaining values (roughly) alternately to the two sides.

Theorem. If G is a rooted binary tree T, at least one minimum-envy allocation satisfies the local median property: every internal node of the tree receives a value that is the median of the values on the node and its two children.

Conjecture. If G is a rooted binary tree T, at least one minimum-envy allocation satisfies the global median property: every internal node of the tree receives a value that is the median of the values on the node and its two subtrees. This would imply a $O\left(2^{d}\right)$ algorithm for rooted binary trees, where d is the maximum depth.

Acknowledgments

[^0]
Disconnected Graphs

MLA and minimum-envy house allocation are completely different on disconnected graphs! Theorem (Seidvasser [1970]). In any graph G, MLA assigns contiguous intervals of values to each connected component of G.
This means that MLA is solvable in poly-time when each component is solvable in poly-time. Theorem (NP-Hardness). The minimum-envy house allocation is NP-hard even on disjoint unions of paths (or cycles, or stars).
Proof. Reduction from Unary Bin-Packing,
Note that in MLA, forests have $O\left(n^{\log _{2} 3}\right)$ time algorithms (Chung [1984])!

Separability

We can use the idea of separability to construct FPT algorithms for some disconnected graphs. Definition (Separability). Let G be disconnected with connected components C_{1}, \ldots, C_{k}.

1. G is separable if for any instance, there is an optimal allocation where some C_{i} receives a contiguous set of values, subject to which C_{j} receives a contiguous set of values, and so on 2. G is strongly separable if for any instance, some optimal allocation assigns contiguous subsets of values to each C_{i}
2. G is inseparable if there is an instance where every optimal allocation assigns non-contiguous values to two (or more) components.

Important Observation: Strongly separable graphs have FPT algorithms and separable graphs have XP algorithms, in the number of connected components (if each component is solvable poly-time).

By Seidvasser [1970], in MLA, every graph is strongly separable. In the minimum-envy house By seidvasser 1970 , in MLA, every graph is strongly separable. In the minimum-envy house also separable graphs that are not strongly separable.

Figure 2. For the instance above, the optimal allocation to $P_{2}+C_{3}$ is to give the two extreme-valued houses to the edge, and the cluster in the middle to the triangle. This graph is separable but not strongly separable.

Classification of Disconnected Graphs

Theorem. Arbitrary disjoint unions of paths (or cycles, or stars) are strongly separable.
Theorem. An arbitrary disjoint union of cliques $K_{n_{1}}, K_{n_{2}}, \ldots K_{n_{r}}$ is separable. Furthermore, it is trongly separable if and only if all the cliques are equisized.
Theorem. There is an inseparable forest.

References

 M.R. Garev, D.S.Johnson, and L. Stockneyer. Some Simplifed NP-Complete Graph Problems. Th
1976. ISN O304-3775.

[^0]: We would like to thank Andrew McGregor, Cameron Musco, and Yair Zick for immensely helpful discussions and feedback.

