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ABSTRACT
We consider the problem of utility maximization in online ranking
applications while also satisfying a pre-defined fairness constraint.
We consider batches of items which arrive over time, already ranked
using an existing rankingmodel.We propose online post-processing
for re-ranking these batches to enforce adherence to the pre-defined
fairness constraint, while maximizing a specific notion of utility. To
achieve this goal, we propose two deterministic re-ranking policies.
In addition, we learn a re-ranking policy based on a novel variation
of learning to search. Extensive experiments on real world and
synthetic datasets demonstrate the effectiveness of our proposed
policies both in terms of adherence to the fairness constraint and
utility maximization. Furthermore, our analysis shows that the
performance of the proposed policies depends on the original data
distribution w.r.t the fairness constraint and the notion of utility.
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1 INTRODUCTION
Ranking models are ubiquitous and support high stakes decisions in
a variety of application contexts, e.g., online marketing, job search
and candidate screening, loan applications, etc. Depending on the
application, these models are used to rank products, job candidates,
credit profiles, etc. Ultimately, these models facilitate selection of
specific items from the ranked list.

Many practical instantiations of ranking applications are online
processes where there is an incoming stream of batches of items to
be ranked. For example, if we consider a hiring application, a job
advertisement elicits applicants which naturally arrive over time.
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The hiring entity processes these applications in batches to screen
and select candidates for job interviews. Unlike a static ranking
application, such an online system necessitates proactive decision
making so as to maximize long-term utility. In the context of
hiring, this translates to the selection of qualified candidates given
an unknown distribution over the batches of future applicants.

The position of an item in a ranking directly influences its vis-
ibility or exposure [23], thereby directly affecting whether or not
the item is eventually selected. Standard techniques for ranking
often involve ordering items in descending order of relevance (as
defined in information retrieval literature [22]). For example, in
hiring, relevance can be quantified as the degree to which an appli-
cant’s qualifications match the job requirements. These standard
techniques are referred to as utility maximizing ranking algorithms.
However, recent literature has shown that utility maximization can
lead to representation disparities in the generated rankings [14, 23],
either in the static or online environment.

Recent work in machine learning fairness attempts to alleviate
discrimination by enforcing adherence to specific fairness criteria
or equivalently, fairness constraints [8, 9]. While a large proportion
of this research focuses on supervised classification [27, 28], the
idea of fairness in ranking is relatively less explored [3, 6, 23, 29]. In
previous work, algorithms have been proposed to satisfy a variety
of such fairness constraints (e.g., parity of exposure). However,
these algorithms are primarily aimed at static rather than online
ranking problems. One technique for ensuring adherence to a
fairness constraint in classification is to post-process the decisions
from a trained (black-box) classifier [11]. In the offline variant of
this technique, a learned classifier is modified offline to generate a
derived classifier which is then deployed to make the predictions
in real time. One issue with this approach is that adherence to
the fairness constraints hold in expectation with respect to the
training data distribution. Consequently, this might lead to sporadic
violations of the fairness constraints on the test data distribution.

In this work we consider the problem of satisfying fairness con-
straints while maximizing utility in online ranking applications.
We do not advocate for a specific fairness constraint. Instead, we
assume that a constraint is assigned prior to deployment, and our
goal is to ensure that it is always satisfied. While our approach can
incorporate general constraints, in this paper, we define the demo-
graphic disparity criterion to ensure parity of pairwise exposures of
the different groups of items over an aggregate of observed ranking
batches. Parity constraints are important in ranking applications
beyond fairness considerations, e.g., to incorporate diversity in
rankings.
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We consider an incoming stream of batches of items that need
to be ranked for a specific application. An existing ranking model
generates a ranking from each batch at a given timestep. The goal
is to decide whether (and how) to re-rank the batch in order to
maximize cumulative utility while enforcing the fairness criteria.
We post-process or re-rank the decisions generated by the initial
(fixed) ranking model by deploying a re-ranking algorithm that
guarantees that the fairness constraints are satisfied. Unlike a static
intervention, an online post-processor is better equipped to handle
concept drift in the test data distribution. It can address instanta-
neous fairness constraint violations at any given timestep, thereby
satisfying the fairness constraint pro-actively through the time
steps, while maximizing a predefined utility notion.

We begin by proposing two different deterministic policies: Fair
Queues and Greedy Fair Swap. Since our framework involves an un-
known distribution over ranking batches, we also propose to learn
a re-ranking policy via a novel variation of learning to search [7],
dubbed locally optimal learning to search with queues (L2SQ). L2SQ
creates a priority queue for each group in a batch, within which
items are ordered according to relevance scores from the initial
ranking model. The learned policy creates a re-ranking by repeat-
edly deciding which queue to pull from until all queues are empty.
The learned policy’s action space is defined at each position in the
re-ranking to be the non-empty queues which, upon being pulled
from, can result in a ranking that satisfies the fairness constraint.

In summary, we make the following contributions: a) we present
an algorithmic framework for online post-processing of ranking
batches according to a given fairness criteria, b) we propose two
deterministic policies, and a novel approach to learn a re-ranking
policy which maximizes utility while respecting the fairness crite-
ria, and c) we present extensive experimental results on various real
world (German Credit, AirBnb, StackExchange and Resume) as well
as a synthetic dataset to demonstrate the effectiveness of the pro-
posed approaches in terms of utility and adherence to the fairness
constraint. We release our processed versions of the datasets for the
online re-ranking setting. In addition, our experiments demonstrate
that the performance of the policies depends on the original data
distribution w.r.t the given fairness constraint and the notion of util-
ity. For concreteness and based on available datasets, we consider
specific instances of ranking applications, but our methodology is
generally applicable.

2 RELATEDWORK
There are several directions of ongoing research at the intersec-
tion of algorithmic fairness and rankings. Yang and Stoyanovich
[26] propose various logarithmic discounting based measures for
fairness and extend the approach on learning fair representations
in [31] by redefining the loss function to be appropriate for ranked
outputs. Several novel metrics for fairness auditing on rankings
are proposed in [15, 21]. There is previous work on mitigating bias
in the relevance scores, which are often used for generating rank-
ing models. This includes work on inverse propensity scoring to
estimate true relevance scores produced using click data [13] and
learning a fair relevance model [30]. Kulshrestha et al. investigate
and distinguish between sources of bias arising from the data and
the ranking model respectively [16]. Asudeh et al. and Guan et al.

break the ranking score into a linear combination of component
scores, with weights on each component given by the user. If the
user-provided weights produce an unfair ranking, their algorithm
proposes the closest weight vector which produces a fair rank-
ing [1, 10]. There is previous research on learning ranking models
which satisfy specific fairness constraints. Beutel et al. introduce a
set of novel metrics for fairness auditing in recommendation sys-
tems and improve fairness criteria during model training using
pairwise regularization [2]. Singh et al. propose a learning to rank
approach for utility maximization with fairness constraints [24].

Unlike the above previous work, in our problem setting, an ex-
isting ranking model generates a ranking of items (or a sequence
of rankings). Our approach performs a re-ranking of the items and
constructs a new ranking so as to maximize a given utility notion
while satisfying a fairness constraint. Consequently, we do not
directly learn a ranking model or intervene during the training
process of a ranking model.

One direction of previous research most relevant to our approach
is utility maximization in rankings subject to fairness constraints.
Singh et al. define the concept of exposure and optimize for fair
probabilistic rankings [23]. While their algorithm satisfies the fair-
ness constraints in expectation, the constraints might not hold on
the individual rankings sampled from the optimized probability
distribution. Zehlike et al. [29] present a statistical test based ap-
proach which operates on a series of rankings in an online fashion.
However, they consider a specific fairness criterion based on the
proportion of certain group members at each position in the rank-
ing. Biega et al. [3] propose the idea of amortized fairness, but
the analysis is specifically for individual fairness criteria. Celis et
al. [5] propose a constrained maximum weight matching algorithm
for utility maximization with a fairness constraint. However, the
approach does not consider aggregate of rankings in an online
setting. Panda et al. [18] explore audit and control of fairness mea-
sures in ranking batches. We present a concrete formulation of the
online post-processing problem for ranking batches and analyze
deterministic as well as learned policies as solution approaches.

There is significant previous research on diversity in information
retrieval [4, 17] where the goal is to not present similar items in
the rankings. Stoyanovich et al. study the online, diverse top-k set
selection problem which is different from our problem setting [25].
Sakai and Song present a metric for auditing rankings for diversity
measures [20]. In contrast, our approach reconstructs rankings to
satisfy given diversity criteria. Moreover, unlike the majority of
previous work on ranking diversity which are based on similarity
of items, our approach operates on a discrete set of items as groups.

3 PROBLEM DEFINITION
In this section we describe the problem setting of online fair utility
maximization in ranked batches. We begin with a brief review of
standard definitions from information retrieval. Consider a batch of
𝑛 items 𝑖 ∈ 1, 2, . . . 𝑛. Let 𝑟 (𝑖) denote the rank of item 𝑖 in ranking 𝑟 .
The exposure [23] of 𝑖 under ranking 𝑟 is defined as the following.

Exposure(𝑖 |𝑟 ) = 1
log(𝑟 (𝑖) + 1) (1)
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Let 𝑞(𝑖) be the relevance of item 𝑖 . The discounted cumulative gain

(DCG) of a ranking 𝑟 is defined as 𝐷𝐶𝐺 (𝑟 ) =
𝑛∑
𝑖=1

2𝑞 (𝑖 )−1
log(𝑟 (𝑖)+1) and the

normalized DCG (nDCG) of 𝑟 as 𝐷𝐶𝐺 (𝑟 )
𝐷𝐶𝐺 (𝑟★) , where 𝑟

★ ranks items in
decreasing relevance order.

We assume that each item 𝑖 in the batch is a member of a pre-
defined group, 𝑔(𝑖). In this work, as a concrete example of a fairness
constraint, we aim to generate rankings so as to equalize exposure
across groups [23, 30]. Specifically, let 𝐺 𝑗 = {𝑖 ∈ [𝑛] | 𝑔(𝑖) = 𝑗} be
a group of items. Then the exposure of 𝐺 𝑗 in ranking 𝑟 is given by
Exposure(𝐺 𝑗 |𝑟 ) =

∑
𝑖∈𝐺 𝑗

Exposure(𝑖 |𝑟 ).

We denote our fairness constraint as the demographic disparity
(DDP) constraint that bounds the difference in mean exposures
between all pairs of groups. We define the DDP of a ranking 𝑟 as

𝐷𝐷𝑃 (𝑟 ) = max
{𝐺 𝑗 ,𝐺 𝑗′ }

Exposure(𝐺 𝑗 |𝑟 )
|𝐺 𝑗 |

−
Exposure(𝐺 𝑗 ′ |𝑟 )

|𝐺 𝑗 ′ |
. (2)

Our fairness constraint ensures that the DDP is less than a predeter-
mined threshold 𝛼 . Note that DDP is analogous to the demographic
parity constraint in classification. It also relaxes a previously pro-
posed demographic parity constraint on rankings [23]. Although
we focus on DDP here, our approach can be adapted to account for
any general fairness constraint.

3.1 Online Post-Processing For Rankings
Unlike previous work, we focus on the online setting where the
batches of items arrive over time. Specifically, at each timestep
𝑡 ∈ {1, . . . ,𝑇 } we receive a batch of items initially ranked by a fixed
ranking model in descending score order (ranking denoted 𝑟 (𝑡 )init).

We will define a post-processing policy 𝜋 to re-rank the items
in each batch according to a new ranking 𝑟 (𝑡 ) containing group
populations 𝐺 (𝑡 )

𝑗
, such that nDCG is maximized and the fairness

constraint is satisfied. However, in this setting, the nDCG and the
fairness constraint apply in aggregate over batches. In particular,
at a given timestep 𝑡 , we define the nDCG at 𝑡 for some sequence
of rankings 𝑅 = {𝑟 (1) , . . . , 𝑟 (𝑡 ) }, 𝑛𝐷𝐶𝐺 (𝑅, 𝑡), as

1
𝑡

𝑡∑
𝑠=1

𝑛𝐷𝐶𝐺 (𝑟 (𝑠) ) (3)

The DDP at 𝑡 , 𝐷𝐷𝑃 (𝑅, 𝑡), is

max
{𝐺 𝑗 ,𝐺 𝑗′ }

∑𝑡
𝑠=1 Exposure(𝐺

(𝑠)
𝑗
|𝑟 (𝑠) )∑𝑡

𝑠=1 |𝐺
(𝑠)
𝑗
|

−
∑𝑡
𝑠=1 Exposure(𝐺

(𝑠)
𝑗 ′ |𝑟

(𝑠) )∑𝑡
𝑠=1 |𝐺

(𝑠)
𝑗 ′ |

(4)
𝜋 uses all rankings {𝑟 (𝑠) }𝑡−1

𝑠=1 ∪ {𝑟
(𝑡 )
init} to compute the utility

and the constraints in aggregate. However, it can only re-rank the
current batch and not any of the previous batches. By re-ranking
the current batch, our post-processing policy aims to satisfy the
fairness constraint (in aggregate) while maximizing cumulative
utility over the batches observed so far. Consequently, our goal in
online post-processing is given by

maximize 𝑛𝐷𝐶𝐺 (𝑅,𝑇 )
subject to max

1≤𝑡 ≤𝑇
𝐷𝐷𝑃 (𝑅, 𝑡) ≤ 𝛼

(5)

Henceforth, we use the term fair ranking to denote an aggregate
of ranking batches up to a given (current) time stepwhich satisfy our
DDP fairness constraint (and the term unfair ranking otherwise).

4 DETERMINISTIC POLICIES
A deterministic policy re-ranks a batch at a given time-step so as to
obtain a solution to the objective in Equation 5. In this section, we
describe two deterministic re-ranking policies based on different
heuristics: Fair Queues and Greedy Fair Swap.

4.1 Fair Queues
We begin by modifying the FA*IR algorithm proposed in [29]. The
original FA*IR algorithm creates a priority queue for each group,
sorted in decreasing order of relevance. This is followed by construc-
tion of a new ranking as follows. To fill each position in the new
ranking, it identifies the queue with the most-qualified (top) item
and pops from that queue. If that selection results in a sub-ranking
which violates the fairness constraint, it identifies the queue with
the next most-qualified top item and pops from that queue instead.

We denote our modification of FA*IR as Fair Queues. This algo-
rithm works in a similar fashion to FA*IR, but there are two key
differences. FA*IR models each sub-ranking on 𝑛′ items using a
binomial distribution 𝑝 (𝑘 ;𝑛′, 𝑝) and checks that 𝑝 (𝑘 ;𝑛′, 𝑝) > 𝛼 ,
while Fair Queues applies our non-probabilistic DDP constraint
on full rankings. Second, our fairness definition is based on group
exposure in aggregate across multiple time steps and applies to
multi-group settings, while the fairness definition in [29] only ap-
plies to single rankings with two groups (usually denoted as the
protected and non-protected groups).

Figure 1: An example illustrating the can be fair pruning for
the action space. There are 3 groups: male, female, and non-
binary. The DDP threshold is 0.25. The model checks if it
can select from themale queue and still create a fair ranking.
Both possible ranking completions are unfair after selecting
a male item, indicating that selection from the male queue
is not a valid action for this time step. The red highlights
indicate the group pairs which attain themaximum average
exposure difference (DDP).

We denote the subroutine that checks if a ranking can be com-
pleted while satisfying the fairness constraint as can be fair (illus-
trated in Figure 1). A naive approach would examine every com-
pletion of the ranking until it finds a fair completion or until it
exhaustively examines all enumerations of ranking completions.
Since there are 𝑛! rankings on 𝑛 elements, we use a heuristic (Sec-
tion 4.1.1) to find a single ranking completion. If that heuristic-based
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ranking completion is unfair, can be fair fails, and we restrict the
algorithm from selecting from the queue in consideration. In case
all queues are eliminated, we select from the queue of the group
with the minimum exposure.

Using the heuristic for can be fair, Fair Queues has a worst-case
complexity of Θ(𝑔𝑛2) for a ranking with 𝑛 items and 𝑔 groups. The
use of a heuristic rather than an exact method for can be fair implies
that we might sometimes over-restrict the action space. However,
even with the heuristic, can be fair never incorrectly allows for
selecting a queue which precludes a final fair ranking, as long as
there is a queue which allows for a final fair ranking. Therefore,
while the reconstructed ranking might be sub-optimal with respect
to nDCG, it will be fair whenever possible.

4.1.1 Can Be Fair Heuristic. Our heuristic completes a ranking
using the same basic framework as Fair Queues - it selects a queue
to draw from at each step. However, rather than selecting from the
queuewith themost relevant top item, it selects from the queuewith
the least expected exposure if we fill each remaining position by
selecting from a random queue . To calculate the expected exposure,
we first calculate the average exposure for all remaining open slots
in the ranking. We then compute the expected exposure for a group
by assuming that each remaining item in the group’s queue receives
the average remaining exposure.We can then average the exposures
for each group under this assumption, and select from the queue
with the lowest expected exposure. We do not claim this heuristic
creates the optimally fair ranking completion, but rather treat it as
a reasonable approximation.

4.2 Greedy Fair Swap
Our second deterministic policy denoted as Greedy Fair Swap aims
to promote members of groups with lower exposure within a single
ranking 𝑟 (𝑡 ) . The algorithm (Algorithm 1) iteratively selects the
most highly ranked member (highest relevance score) of a lower-
exposure group which is still below a member of a higher-exposure
group, and swaps them. Note that this swap is greedy because it
minimally lowers nDCG while guaranteeing a lower DDP. The
algorithm terminates when the rankings up to time 𝑡 meet the DDP
threshold 𝛼 . Since there are

(𝑛
2
)
possible swaps, Greedy Fair Swap

is 𝑂 (𝑛2) for re-ranking a batch with 𝑛 items. This algorithm does
not necessarily produce a ranking with optimal nDCG under the
fairness constraint.

5 POLICY BASED ON LEARNING TO SEARCH
Both Greedy Fair Swap and Fair Queues have a potentially unde-
sirable property by definition, which is they only act when it is
absolutely required. Consequently, the DDP measure stays very
close to the threshold at all times. If these policies suddenly have
to re-rank a batch with highly relevant items from the group with
the highest exposure, these will be forced to take a large penalty
on nDCG to maintain the DDP under the fairness threshold. This
weakness motivates a more pro-active learned policy. In this sec-
tion, we describe a learned policy based on a variation of learning
to search.

Algorithm 1: Greedy Fair Swap
input : Initial ranking 𝑟init on items {𝑖1, . . . 𝑖𝑛 }, group

membership function 𝑔, threshold 𝛼′
output :Ranking 𝑟 on {𝑖1, . . . 𝑖𝑛 }, with 𝐷𝐷𝑃 (𝑟 ) ≤ 𝛼′

1 Initialize 𝑟 = 𝑟init
2 while 𝐷𝐷𝑃 (𝑟 ) > 𝛼′ do
3 Identify the group with highest exposure𝐺ℎ

4 Identify the group with lowest exposure𝐺𝑙

5 Set 𝑙 = argmin
𝑖 𝑗 ∈𝐺𝑙 | ∃𝑖 𝑗′∈𝐺ℎ ,𝑟 (𝑖 𝑗′ )<𝑟 (𝑖 𝑗 )

𝑟 (𝑖 𝑗 )

6 Set ℎ = argmax
𝑖 𝑗′∈𝐺ℎ | 𝑟 (𝑖 𝑗′ )<𝑟 (𝑙 )

𝑟 (𝑖 𝑗′ )

7 Swap 𝑙 and ℎ in 𝑟

8 return 𝑟

5.1 Background
Locally optimal learning to search (LOLS) [7] learns a policy
by imitating and extending a reference policy. Since the learned
policy provably has low regret on deviations from the reference, it
is possible to improve upon the performance of the reference [7].
The learned policy can be trained so as to predict an action from
features derived from the state space at a given timestep. Below
we summarize the concept at a very high level. LOLS constructs a
training example by “rolling in” up to a given number of time steps
according to the learned policy. For every action in the action space,
LOLS “rolls out” using the reference policy (or possibly a mixture
of the reference and the learned policy). This roll out terminates at
an end state, and a score can be assigned to that end state. Using
these scores, the model learns to prioritize actions which led to
high scoring end states at a given time step.

5.2 LOLS With Queues (L2SQ)
Our proposed approach, Locally Optimal Learning to Search with
Queues, merges the learning to search algorithm reviewed in Sec-
tion 5.1 with the queue-based ranking procedure described in Sec-
tion 4.1. A detailed description of L2SQ can be found in Algorithm 2.
Concretely, we create a scoring model (a feedforward neural net-
work) that maps from a partial ranking and a collection of queues
(one per group) to a score for each queue. We select from the queue
with the top score from the model, rather than the queue with the
most-relevant item. Intuitively, we would like the L2SQ model to
learn to maintain a fairness buffer well below the DDP threshold,
allowing the model to take advantage of incoming batches with
highly relevant items from a high-exposure group.

To implement the LOLS framework, we must define a reference
policy, a parametrization of the state and action spaces, and a cost
function to be applied at the end of roll-outs. At training time,
we construct training examples where each example consists of
a rolled-in set of rankings up to some timestep (described below)
and a choice of queues from which to select the next element of
the current ranking. We then roll-out for each possible choice of
queue to obtain costs for each queue. From this pairing of state
and costs, we construct multiple training examples to update the
scoring model. To construct a set of rankings at inference time, we
apply the scoring model for each slot of each ranking, filling in
slots with the top item from the highest-scoring queue at each step.
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Algorithm 2: L2SQ Training

input :Sets of initial rankings {𝑅 (𝑛)init }
𝑁
𝑛=1, mixture parameter

𝛽 ≥ 0, and roll-out horizon ℎ
1 for 𝑛 ∈ {1, 2, . . . , 𝑁 } do
2 𝑅init ← 𝑅

(𝑛)
init

3 for 𝑡 ∈ {1, 2, . . . ,𝑇 } do
4 Roll-in 𝑡 − 1 rounds to reach 𝑟 (𝑡 )init ∈ 𝑅init
5 Create priority queue𝑄𝑔 (ordered by decreasing relevance)

for all groups 𝑔
6 Initialize 𝑟 (𝑡 ) = ∅
7 while |𝑄𝑔 | > 0 for at least 2 groups 𝑔 do
8 for 𝑔 ∈ {1, 2, . . . ,𝐺 } do
9 if |𝑄𝑔 | > 0 and can_be_fair(𝑟 (𝑡 ) ,𝑄𝑔) then
10 Copy 𝑟 ′(𝑡 ) ← 𝑟 (𝑡 )

11 Insert𝑄𝑔 .pop() into 𝑟 ′(𝑡 )

12 Apply roll-out policy to fill 𝑟 ′(𝑡 ) and the next
ℎ batches 𝑟 ′(𝑡+1) , . . . 𝑟 ′(𝑡+ℎ)

13 Compute cumulative nDCG after roll-out for
group 𝑔

14 For all rolled-out 𝑔, compute cost = max nDCG for any
group minus nDCG of 𝑔

15 Construct training example from groups 𝑔
16 Compute BPR loss
17 Apply roll-out policy to insert𝑄𝑔 .pop() into 𝑟 (𝑡 )

18 Update model with total BPR loss

We parametrize the search space over queues (rather than over
items) because DDP is based on groups and is agnostic to the choice
of individual elements within a group.

Reference Policy Any ranking policy can be used as the refer-
ence policy. All our results use Fair Queues as the reference policy,
since L2SQ did better with Fair Queues as a reference than with
Greedy Fair Swap in early experiments.

Parametrization of State and Action Spaces We encode the
state space using 17 features per group: mean exposure and per-
centage of the group in previous batches, total number of items in
current ranking, statistics of relevance scores and ranks for items
which have already been ranked (min, max, mean, standard de-
viation), the relevance score of the top item in the queue, size of
the queue, and statistics of relevance scores for the queue (min,
max, mean, standard deviation). We parametrize the model using a
feedforward neural network, which takes as input all features for
all groups and outputs a vector of scores, one per group.

The action space consists of all selections fromnon-empty queues
which can result in a ranking that satisfies our constraint. We use
the can be fair subroutine described in Section 4.1 to restrict the
action space for L2SQ.

Roll-out and Cost Computation To create training examples,
we roll-in up to a certain time step, simulate selecting from each
non-restricted queue, then roll-out from each simulated choice to
compute a loss function. The policy used for roll-out is a mixture
of the learned policy and the reference policy, where the reference
policy is selected with probability 𝛽 . We calculate the score of
each queue using the average nDCG over all batches after roll-
out. An illustration of roll-out with two groups (male/female), four
timesteps, and a DDP threshold of 0.25 is shown in Figure 2.

Figure 2: Roll-out and loss function computation at a single
time step. We display the relevance of each item, as well as
the difference in male and female exposures for each com-
pleted batch. We roll-out after selecting from each queue to
calculate the post-roll-out nDCGs. The loss is a function of
the post-roll-out nDCGs and the model’s scores. Note the
model’s scores encode the model’s preferences for selecting
from each group’s queue, not the relevances of particular
items.

Training Examples and Loss Function We create multiple
pairwise examples per state, comparing each queue to the queue
with the highest post-roll-out nDCG. The model assigns each queue
in the pair a score, and we compute the Bayesian Personalized
Ranking loss [19] based on the pair of scores and final nDCGs for the
two queues. If𝑄1 is the queue with the highest final nDCG, then for
every non-restricted 𝑄2 at a given timestep 𝑡 , we calculate the loss
as 𝑙 (𝑄2, 𝑡) = (𝑛𝐷𝐶𝐺 (𝑄1) − 𝑛𝐷𝐶𝐺 (𝑄2)) (1 − ln𝜎 (𝑓 (𝑄1) − 𝑓 (𝑄2))),
where 𝜎 is the logistic function and 𝑓 (·) is the score of the model
for a queue. Note that we do not calculate any losses for actions
which are restricted by can be fair. An example of loss function
computation is in Figure 2 (right).

Inference At inference time, we apply the scoring model for
each slot of each ranking, filling in slots with the top item from
the highest-scoring queue at each step. We apply the can be fair
restriction on the action space at inference time as well, to ensure
that the generated rankings are fair (if possible). Because of the
can be fair restriction on the action space, the L2SQ model has a
worst-case complexity of Θ(𝑔𝑛2) at inference time for a ranking
with 𝑛 items and 𝑔 groups.

6 EXPERIMENTS
6.1 Data
We evaluate our proposed approach on the following four real
world datasets: UCI German Credit, StackExchange, AirBnB, and
a new dataset Resume. In addition, we analyse our algorithms on
a synthetic dataset described below. In each case, we construct
training examples with 10 batches each, and validation and test
examples with 25 batches each.

Synthetic Data We construct a synthetic dataset to study the
behavior of our proposed algorithms. We define four groups for
generating this synthetic dataset. We generate the data by sampling
an initial component ∼ 𝑈 (0, 1) and adding a value sampled from a
Gaussian random variable with standard deviation 𝜎 = 0.1 to each
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group.We set the Gaussian randomvariable to have a negativemean
for two of the four groups, where 𝜇 ∼ 𝑈 (−.75,−.25) is sampled for
each batch, and zero mean for the remaining two groups. For each
batch, we select a random number of elements from each group
(specifically, between 3 and 7 items per group). We sample 100
training examples, 50 validation examples, and 50 test examples.

German Credit Hans Hofmann [12] introduced the German
Credit dataset which maps applicants to credit rating/scores gener-
ated by the private German credit agency Shufa. Each applicant has
features such as age, gender, martial status, etc. There are 1,000 ap-
plicants overall. Our data was created similar to [29] who assigned
a score to each applicant as the sum of the relevant numeric or
ordered attributes1. We rank the applicants by this score. For our
experiments we take the cross-product of gender and age to create
four groups. To convert these rankings we shuffle the data and then
split into batches of size 20. We sample 100 training examples, 50
validation examples, and 50 test examples.

AirBnB Although their setting is different, we take inspiration
from [3] to create a ranking dataset from AirBnB listings. Note
that our results are not directly comparable to [3], because they
consider individual fairness criteria while we consider DDP which
is defined for groups. We create a dataset using AirBnB data2 for the
cities Boston, Seattle, and New York. There are 37,171 listings in our
dataset. Each listing is considered an item, andwe obtain item scores
by summing ratings for each of 7 attributes: cleanliness, check-in,
communication, location, review score, value, and accuracy. Ratings
are generally very close to the maximum of 10. Batches (of size
20) are uniformly sampled at random from the total population.
We create four groups of listings based on price per night: $0-$50,
$51-$100, $101-$200, and $201-$1000. Although listing price is
not a sensitive attribute, our fairness constraint will ensure that
some listings from each price range appear in the results, providing
cheaper listings more opportunity to be seen while giving the user
diversity of choice. From this construction, we sample 300 training
examples, 50 validation examples, and 50 test examples.

Stack ExchangeAlso inspired by [3], we create a realistic query-
answer dataset from the StackExchange online archive3. As with
AirBnB, our results on this dataset are not directly comparable to
their results due to the difference in problem setting. Each ranking
is composed of answers to a question asked on the Unix, AskUbuntu,
and Academia StackExchange websites. We restrict ourselves to
questions with at least 4 answers. There are 28,026 questions that
meet this criterion. For each question, we rank the question’s an-
swers using cosine similarity between Latent Semantic Indexing
vectors4. Answers are assigned a group based on the reputation of
the posting user. We split users into 3 bins: low reputation (1-50),
medium reputation (51-2,500), and high reputation (>2,500), so each
item falls into one of these three groups. User reputation is not
typically a sensitive attribute, but applying our fairness constraint
improves diversity of results and gives less-experienced users more
chance to gain reputation. As with other datasets, a single “ex-
ample” consists of 10 questions for training or 25 questions for

1https://www.github.com/MilkaLichtblau/FA-IR_Ranking
2http://insideairbnb.com/
3https://archive.org/details/stackexchange
4https://radimrehurek.com/gensim/models/lsimodel.html

validation/test. We sample 1000 training examples, 50 validation
examples, and 50 test examples.

Resume Motivated by the setting of screening candidates for a
job in an online, batched setting, we construct a dataset of batched
resumes from a freely available list of 14,800 parsed resumes for
software engineers, data scientists, and other computer science
related professionals across India5. We trained a simple model to
predict, from the body of the resume, whether the applicant should
be considered for a software developer position. As a simple ap-
proximation of such a signal, we train a logistic regression model to
predict (using only the resume’s body) whether or not the resume’s
title contains the word “developer.” We use the scores output by the
logistic regression model as the relevance scores. To sort resumes
into groups, we use the resume’s “state” field to map each resume to
one of four regions of the country: North, South, East, andWest. We
use a batch size of 20 items each. We sample 200 training examples,
50 validation, and 50 test examples.

6.2 Experimental Setup
For each dataset we split the items into two populations, one for
training and validation and the other for test. We sample sets of
rankings in a way that ensures no item is repeated within a single
ranking, but may be repeated across rankings. For training we use
10 timesteps for each set of rankings, and for validation and test
we use 25 timesteps. We use Fair Queues as a reference policy for
L2SQ, rolling out for three timesteps before calculating the loss for
each deviation. The DDP threshold 𝛼 for all datasets is set to 0.1.
We optimize the model with Adam for 20 epochs. The model is a
feed forward neural network with 17 features for each group (listed
in Section 5.2), 2 hidden layers of size ⌊ 172 ⌋ and ⌊

17
4 ⌋ features per

group, and an output layer of size equal to the number of groups.
The model for each dataset was trained on a Xeon Gold 6240 CPU
@ 2.60GHz with 192GB RAM, though in practice we found the
model did not use more than 10 GB of memory.

We tune the mixture parameter 𝛽 on the validation set and keep
the best model for test. We set the learning rate at 0.001 for all
datasets. The test data consists of 50 sets of rankings for each
dataset. We evaluate each algorithm on the test data and calculate,
for each timestep, the mean and 95% confidence interval for nDCG
and DDP across all 50 sets of rankings.

We compare the initial rankings to re-rankings from Greedy Fair
Swap, Fair Queues, and L2SQ. Although there is a large amount of
prior work on fair ranking, we are specifically focused on post-
processing approaches that guarantee fairness over time in an
online, multi-batch setting. We are not aware of prior work that
directly fulfills these criteria, and thus do not make any further
comparisons.

Our code is available online6.

6.3 Results
We begin with the synthetic data. In this setting L2SQ attains the
highest nDCG on the test data while still meeting the fairness
threshold (top row of Figure 3).

5https://www.kaggle.com/avanisiddhapura27/resume-dataset
6https://github.com/ejohnson0430/fair_online_ranking
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Figure 3: Results on synthetic data and German Credit data
over 25 timesteps.

On the real datasets, we find that our two deterministic ap-
proaches are effective at enforcing fairness while maintaining high
nDCG. L2SQ enforces fairness, but its nDCG lags behind the nDCG
of the deterministic algorithms. The results on the German Credit
dataset are shown in the bottom row of Figure 3 (note that we
lower the DDP threshold to 𝛼 = 0.05 since the unprocessed rank-
ings already have low DDP). Results are similar on the other 3 real
datasets and are omitted.

All our approaches produce fair rankings. However, our results
suggest that the deterministic algorithms outperform L2SQ on the
real datasets in terms of nDCG, but L2SQ excels on the synthetic
dataset. By construction, the groups in the synthetic data have
significant differences in mean relevance scores across groups, po-
tentially requiring disruptive re-ranking to maintain fairness. The
real datasets exhibit a low difference in mean relevance scores in
the unprocessed rankings. We hypothesize that this discrepancy
drives the behavior seen in the initial results.

We consequently run additional experiments with a wider spread
of mean relevance scores for the real datasets, discussed in Sec-
tions 6.3.1 and 6.3.2. Section 6.4 provides further discussion on the
algorithms’ sensitivity to the difference in mean relevance scores
across groups.

6.3.1 Score Distributions Across Groups. We find that for the real
datasets, the distribution of scores is not significantly different
across groups. We display the relevance score distributions for
the German Credit and Stack Exchange datasets in the top row of
Figure 4, though Airbnb and Resume show a similar pattern.

In the previous section, we hypothesized that L2SQ outperforms
our deterministic approaches when the initial rankings are very
unfair. To test this on real data, we sample new relevance scores
for all 4 real datasets by adding positive values to some groups and
negative values to others. We then evaluate the L2SQ model and
our baselines on these datasets.

Figure 4: Distribution on GermanCredit dataset (left col-
umn) and StackExchange dataset (right column) with noise
(top row) and without noise (bottom row).

While constructing the rankings for each dataset, we add val-
ues sampled from a Gaussian random variable with zero mean
for groups with higher exposure and a negative mean for groups
with lower exposure. These values are drawn from N(0, 0.1) and
N(−0.25, 0.1) respectively for German Credit, Resume, and Stack
Exchange, where relevance scores are between 0 and 1. The values
are drawn fromN(0, 0.25) andN(−1, 0.25) respectively for AirBnB,
where the relevance scores are between 0 and 7.

As an example, we show the new distribution of scores on Ger-
man Credit and StackExchange in the bottom row of Figure 4. The
groups form separated modes in the space of scores, indicating that
any rankings sampled from the perturbed data will likely not satisfy
the fairness constraint without further processing.

6.3.2 Results With Modified Score Distributions. We show results
for all datasets in Figure 5. We see that L2SQ typically outperforms
Fair Queues and Greedy Fair Swaps in terms of nDCG, and that all
methods are successful at maintaining the DDP below the threshold
at all steps, despite the fact that the unprocessed rankings nearly
always exceed the threshold.

On Resume and StackExchange, L2SQ also visibly maintains a
DDP significantly below the threshold and much lower than the
other policies. L2SQ also displays a higher advantage in terms of
nDCG over the other policies on these two datasets. As previously
indicated, we believe that L2SQ’s main advantage is its ability to
provide a buffer well under the threshold, allowing it to take ad-
vantage of batches which provide high nDCG only if items with
already high exposure are chosen. We find that on the German
Credit and AirBnB datasets, L2SQ is difficult to distinguish from
the other policies.

6.4 Sensitivity to Relevance Distributions
To determine how the L2SQ model performs with respect to the
degree of inherent bias, we perform an experiment systematically
varying the degree of inherent bias in the synthetic dataset.We train
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Figure 5: Results on all modified datasets over 25 timesteps.

L2SQ on 36 different synthetic datasets corresponding to six values
(0.0 to 0.5 by 0.1) for the mean of the Gaussian random variable for
groups 0 and 1, and the same six values for the negative mean of
Gaussian random variable for groups 2 and 3. After training each
model for 20 epochs, we take the model which scores best on the
validation data and compare it to the other algorithms. Figure 6
visualizes the difference in the sum of nDCG scores of the batches
re-ranked by each algorithm.

Figure 6: Red indicates L2S performed better, while blue indi-
cates that either Greedy Fair Swap or Fair Queues performed
better. The opacity of the color indicates degree of improve-
ment.

L2SQ performs best when the groups have some spread between
them, but its performance is not as good when the groups have very
similar or very dissimilar scores. If we denote the total difference
in means as the “spread,” it seems to perform best with a spread of
0.4 - 0.7. We hypothesized that L2SQ would perform better with a
wider spread, but it seems that as the spread becomes too large it
struggles. In this range the model may have a limited state space to

explore during training, which would inhibit its potential to learn
a better policy.

7 CONCLUSION
We propose an algorithmic framework for post-processing of rank-
ing batches while satisfying a given fairness constraint, when op-
erating in an online environment. We evaluate two deterministic
policies as well as a novel learning to search based policy L2SQ.
Extensive experiments on synthetic as well as real world data sets
demonstrate the effectiveness of our proposed approaches. The
experiments also demonstrate that our approach can be general-
ized to consider multiple groups i.e., the synthetic dataset with
different group sizes, StackExchange with three groups, and other
datasets with four groups. Our approach is also robust to the batch
size which varies among the different datasets. While we present
our results using the DDP criterion, our approach can incorporate
general fairness criteria and can operate on ranking models for a
variety of applications.
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